

The Usability Engineering Repository UsER for the Development

of Task- and Event-based Human-Machine-Interfaces

Michael Herczeg. Marc Kammler. Tilo Mentler. Amelie Roenspieß

Institute for Multimedia and Interactive Systems (IMIS), University of Luebeck,

 Luebeck, Germany (e-mail: herczeg@imis.uni-luebeck.de).

Abstract: The Usability Engineering Repository (UsER) is a flexible development environment to

support collaborative analysis, design and evaluation of interactive human-machine systems. For this

purpose, UsER provides several modules, which cover different aspects and methods of the development

of human-machine interfaces. UsER supports the contextualized development of user interfaces in a

broad range of application areas like office systems as well as safety-critical control systems by providing

general as well as domain specific analysis, design and evaluation modules. These modules may be

applied as needed and their contents will be cross-referenced through linked entities and hypermedia

relationships. This semantic network created through analysis, design and evaluation can be mapped into

linear document structures for formal development purposes, especially for project deliverables and

contracts. UsER can be integrated with other development environments through a standardized

requirements interface as well as a standardized process model interface.

Keywords: Usability Engineering, Cognitive Systems Engineering, Human Machine Systems

1. INTRODUCTION

Today, a variety of development process models for software

engineering exist, which are suitable in various application

domains. However, the analysis, design and evaluation of

user-oriented requirements are still not sufficiently taken into

account in most development projects, because either the

process model does not support the appropriate consideration

of user requirements or the software development

environment lacks integrated tooling for user-centered

development. The first issue has been addressed to some

extent by introducing new development processes, like agile

and user-centered software development. In order to tackle

the second issue, the development environment needs to

support methods for collaborative and iterative usability

engineering. The Usability Engineering Repository (UsER),

which we have been developing through the last three years

together with industrial partners, is supposed to fill this gap

while being applicable independently of the software

development and production environments in use. With the

UsER system the processes and the tooling in place may be

extended and enriched for user-centered development.

As there are different questions, challenges and needs in

different application domains, the analysis, design and

evaluation methods applied will differ. While standard office

applications are basically task-based, safety-critical control

systems have to be task- as well as event-based. In UsER we

support a broad range of applications by providing a selection

of modules as instantiations of development methods that can

be applied for specific projects. The contents created with

these modules will be interlinked by hypermedia structures

and by cross-referencing semantic entity-relationships.

2. THE PROCESS AND APPROACH

2.1 The Process

The basic process for a UsER-based development follows the

now widely accepted principles of user-centered development

according to ISO 9241-210. The process phases are supported

by different modules of the UsER environment (Fig. 1).

Implement solutions

Requirements

Specify requirements

(goals)

 Requirements

Produce solutions and

refine requirements
 Interface / interaction design

 Requirements

Evaluate solutions
 Annotations

 Evaluation

Understand and describe

the current state (problem)
 Users

 Tasks

 Context

 Interconnectedness

Plan the human-centered

design process

Iterate where

appropriate

Fig. 1. The Basic Process Model for UsER

In: Narayanan, S. (Ed.). 12th IFAC, IFIP, IFORS, IEA Symposium on Analysis, Design and Evaluation of Human-Machine-
Systems. Las Vegas : International Federation of Automatic Control. pp. 483-490

2.2 The Modules

The flexibility of UsER stems from its variety of method

modules (Fig. 2) and their ability to be combined and

interrelated. The modules might be chosen for specific

projects, depending on the goals and requirements. Their

contents, which are represented by conceptual entities or

hypermedia content, can be interrelated via hypermedia links

and semantic entity-relationship associations.

Fig. 2. The modules of UsER

The modules listed in Figure 2 are just the current repertoire

of methods in UsER. New modules for additional or new

methods may be integrated easily into the open framework as

required. A few other method modules are already under

development in an ongoing process. The extensibility of the

environment is a basic feature possible by its open modular

Java-, GWT- and MySQL-based architecture.

3. GENERAL PRINCIPLES

UsER provides a platform to describe, annotate, collect,

aggregate, cross-reference and version user- and application-

centered requirements for interactive systems, organized as

projects in an integrated interactive environment. As a

foundation, several general principles have been applied:

creating entities, iteratively specifying their attributes,

semantic linking of entities as well as annotating and

communicating entities between participants in the

development process, including customer and end users.

3.1 Modeling and Specifying Entities

UsER supports the classical phases of system development

except implementation: analysis, design, evaluation and

reflective usage and feedback during the operational phase. In

respect to the activities in these phases, UsER allows to

define, structure and describe the entities of a work system.

In the analysis phase these are mainly organizational entities

and structures, roles and competences, tasks and application

objects (artifacts), users and their capabilities as well as

problem scenarios combining these entities into stories and

contexts of standard, non-standard and abnormal usage. In

the design phase there are interaction scenarios and mock-ups

with features, services or application functions derived from

the tasks. During the implementation and evaluation phases

these analysis and design entities may be annotated,

discussed, refined and finalized. The evaluation phase will

check through task-based test cases how effective, efficient,

satisfactory and safe the tasks will be performed by users in

certain roles and predefined work contexts. In the operational

phase user feedback, typically through evaluations, tickets or

incident reports may be fed back into the development loops.

3.2 Collecting and Linking Entities

Within UsER the analysis and design entities defined will be

structured and cross-referenced. Every entity may be

semantically linked to any other entity within the same

project or referring to certain global entities (templates)

defined through other projects. This helps to interrelate

analytic findings, design concepts and structures within one

project or across projects. The result will be a structured

collection of information and requirements about users,

organizations, roles, tasks, physical and informational

artifacts and objects, processes, scenarios as well as any

informal rich-text information and external assets. These

meshed entities may be sequentialized in documentations to

create and print reports for official development documents

or contracts like system and software specifications on

different levels and in different phases of the development

process.

3.3 Annotating and Communicating Entities

In order to communicate problems and concepts directly

within the relevant development context where they arise,

annotations, documents and other materials (assets) may be

attached to any entity. Textual annotations and assets like

graphics, screen shots, hotline tickets, incident reports etc.

may be addressed and sent to one or more recipients. The

project repository will grow by new information sources,

findings and decisions, which can be stored and saved in

subsequent versions of the repository. Communication

between users, customers, analysts, developers, external

experts, even across phases of the development process, will

be controlled by a workflow engine within UsER. The system

has been developed partially in a bootstrapping process by

applying its own methods onto itself as an interactive

software product.

 User Analysis: user classes, stereotypes,

personas and user goals

 Task Analysis: hierarchical task analysis (HTA)

 Organizational Analysis: structure, roles

and task assignment

 Artifacts: object and information models

with arbitrary attribute-value pairs

 Requirements: functional and non-functional

 Scenarios: storyboards with mock-ups

 Process Modeling: BPMN activity models

 Evaluation: formative and summative methods

 Rich Text: for any other information

4. ORGANISATIONS, TASKS AND ROLES

A canonical start for the analysis of a process control system

is the analysis and definition of tasks, roles and

organizational structures. UsER provides a module for

organizational structures, roles and staffing as well as a

module for task analysis.

4.1 Task Analysis

Generally the development of operational systems starts with

the analysis of tasks. There is a long history of methods for

task analysis. The method of hierarchical task analysis (HTA)

is rewarding and therefore widely used in many domains

(Annett & Duncan, 1967; Shepherd, 1998, Stanton, 2006).

While many design questions may be addressed by a task

analysis, new questions often arise and lead the development

into a new direction. An HTA for an analyzed work system

will usually be modified and optimized using the claims

derived from problem scenarios, resulting in an HTA for the

target work system to be implemented.

Tasks may be defined in UsER as a hierarchical graph or a

textual structure (Fig. 3). Each node in the HTA may be

selected and described with pre- and post-conditions for the

task to be performed as well as further attributes like

duration, frequency, or criticality when needed. Additionally,

each task node can be linked to a role entity within the UsER

project for task allocation.

Fig. 3. HTA in UsER for a plant control system (detail)

As task structures are directly related to organizational

structures and roles, it is quite typical to perform an

organizational analysis in parallel.

Usually roles in task analysis will be for human operators but

machine roles may be defined in the same way to define task

allocation between humans and machine in the sense of

flexible automation and supervisory control systems.

4.2 Organizational Analysis

A control system will always be embedded into an

organization. The operators and supervisors will be part of an

organizational structure and will hold positions with certain

roles. This structure can be depicted in organizational charts

and linked to tasks and work object entities (section 5.1).

UsER allows depicting and refining a typical form of org-

chart and allows the positions being associated to roles, while

the roles are associated with tasks and work objects (Fig. 4).

The organizational structure serves as the place where

positions, roles and tasks are clarified or synthesized for new

operational and organizational patterns. Other than typical

tools for organizational analysis, UsER binds the entities for

positions, roles and tasks together and supports analysis and

optimization of the operational and work breakdown structure

as well as the consequences of automation.

Fig. 4. Organizational chart for a plant control system (detail)

4.3 Process Modeling

Describing work structures for a control system will always

imply to describe work processes. UsER provides a module

for process modeling (Fig. 5) based on a subset of BPMN

2.0, the international standard for business process modeling.

Activities of operators may be defined in different kinds of

process charts as needed.

Fig. 5. Process chart in UsER (detail) based on BPMN 2.0

5. WORK AND CONTROL OBJECTS

Process control in an abstract sense means the supervision

and control through an information model representing the

work objects, which have to be observed and manipulated in

their states whenever necessary. Work objects from the

application domain itself will usually not be controlled and

manipulated directly and physically. The process control

system serves as intermediate information and interaction

layer providing control objects that will be perceived and

manipulated as substitutes.

To design a process control system means to define work

objects and perhaps several levels of abstraction with control

objects replacing the domain objects in the operational tasks.

Rasmussen proposes two dimensions for this structure: the

abstraction dimension, from the purpose down to the physical

level, and the decomposition hierarchy of domain or

informational objects from the whole to the parts (Fig. 6; cf.

Rasmussen, 1984, 1985; Rasmussen et al., 1994; Vicente,

1999).

Fig. 6. Functional abstraction and decomposition of work

objects (cf. Rasmussen, 1985)

The UsER system provides a module that allows the

definition of artifacts, which may be the representatives of

these structures of work and control objects. This module

provides a foundation for the information model of a control

system.

5.1 Work Objects

Thinking in work objects, means thinking in the application

domain itself. For example for a plant control system the

domain objects will be pumps, tanks, valves or even the plant

as a whole. It might be helpful to start an analysis by defining

the essential work objects from an operational view with their

basic attributes to be controlled. From there it is possible to

come up with the initial operational task structures and

operator roles. UsER allows to associate artifacts with tasks

and roles to clarify responsibilities and activities.

5.2 Control Objects

As already mentioned, there will be an abstraction of work

objects into control or informational objects. These may be

positioned into several layers representing the different layers

of an operational functional abstraction (cf. Fig. 6). These

different informational layers may serve as operational layers

themselves, as the operational tasks and procedures will be

structured according to the informational abstractions and

vice versa.

6. USERS, SCENARIOS AND CONTEXTS

Usability engineering has often been called to be user- as

well as application-centered. This basically means that the

target users and their work situations will be the focus points

for the system design. This can be done systematically by

user modeling and the description of scenarios and work

contexts for the operators and other roles in the context of a

control system.

UsER provides a flexible user modeling tool as well as a rich-

text hypermedia scenario editor to elaborate on users, their

characteristics and activities.

6.1 User Modeling

User modeling means to analyze the target users, their

capabilities as well as their limits, their expectations and their

mental models (Johnson-Laird, 1983; Carroll & Olsen, 1988).

User modeling has been done in many different ways. There

are methods for informal descriptions of users, like in the

Persona Model (Cooper, 1999), as well as more formal

descriptions like GOMS (John, 1995) or other cognitive

engineering methods.

UsER provides a user class modeling framework, where users

may be described in respect to some basic and abstract

properties as well as more specific and illustrative by

describing stereotypes or even personas (Fig. 7).

User classes are abstract descriptions like for example

operators in general. A stereotype might for example be “the

experienced electrical engineer being in service for more

than 15 years for a production company”. A persona might

for example be “Theo Sondheimer, a 45 year old

electrotechnical engineer working for the company Quick

Pac as an expert for electrical power systems.”

UsER allows creating more or less abstract user models

directly out of field research by defining surveys and

variables through the evaluation module (see section 9).

Fig. 7. Persona model in UsER
 (Image courtesy of stockimages / FreeDigitalPhotos.net)

6.2 Scenarios and Contexts

It is widely considered important to involve the stakeholders,

especially the operators and operations experts into the

design process. For this, all contributors in the development

process need a common language and common reference

points in the problem domain. Rich text problem scenarios

(Fig. 8) can serve this purpose right at the start of the process,

because they show and verbalize use cases in a readable,

understandable and problem-oriented way, other than abstract

depictions like UML Use Case Diagrams. On one hand, the

development team needs to understand the conditions and

requirements at the user’s workplace. On the other hand,

users should get an idea of how the system will look and feel

when it will be available. The difficulty to derive interaction

scenarios or design scenarios from problem scenarios can be

mitigated by claims. Claims are used to describe features of

the current work and usage situation which have relevant

positive or negative consequences (Rosson & Carroll, 2002).

During the design phase, claims are helpful to point out

potential positive and negative aspects of design decisions

and clarify problems from the original starting points.

Scenarios can be enriched by mock-ups of the human-

machine interfaces.

Fig. 8. Problem scenario in UsER for an alarm list for a plant

control system

7. DESIGN SKETCHES AND MOCKUPS

After having done a good part of the problem analysis and

modeling, the human-machine system has to be designed.

This basically means workspace design along with some

details for displays and controls. The result may be more

detailed sketches or specifications of an operator’s workspace

like a cockpit or an industrial control room.

7.1 Mock-ups and Screenshots

Low-fidelity (lo-fi) mock-ups are a method to design human-

machine interfaces. The basic idea of mock-ups is the

construction of an interaction concept by focusing on the

basic functions of an interactive system. The attribute “lo-fi”

refers to the low level of graphical and functional detail and

the lack of actual programmed behaviour. Main points of

interest are rather simple shapes, layouts and visual codings

of interaction elements than the precise later appearance.

Therefore it is sometimes been recommended to make the

mock-ups even look like sketches or drawings. This ensures

that all stakeholders involved will be aware of working on a

changeable sketch without caring about details too soon.

Further details will be treated in later design phases. Lo-fi

mock-ups can be interpreted as low-fidelity prototypes,

which will become more and more detailed during the

process. Lo-fi mock-ups incorporate a variety of previously

collected information from the scenarios and models. The

stakeholders, who are involved in the design process, create

lo-fi mock-ups by using the design scenarios, drawings,

charts, screenshots, experiences with existing tools,

individual preferences and various other inputs. The

operators shall be involved in this iterative lo-fi mock-up

creation process. The advantage of lo-fi mock-ups is that all

previously determined requirements concerning the users are

transformed into something “graspable” and iteratively

improved by all of the participating stakeholders and system

designers.

Fig. 9. A mock-up of an alarm list for a plant control system

(integrated from a spreadsheet into UsER by graphics import

within a rich text section)

7.2 Storyboards

Storyboards are patterns of usage, i.e. scenarios along with

sketches of the human-machine system in place. Operators

will be described who are using the system within their work

environment. Storyboards may be cartoon-like sketches

depicting operators using their displays and controls during a

specific task. It might for example show a plant operator

setting up a production line step by step while

communicating with technicians inside the plant.

In certain cases storyboards might help to understand critical

incidents or accidents by describing relevant phases and

activities of a team of operators before, during or after some

critical event. This will illustrate critical paths during the

operation of a control system and give hints about

improvement in the procedures, work spaces or especially

controls, displays or communication devices.

Currently storyboards may be created through the scenario

module. In later versions of UsER a special module with

support for graphic storylines will be added.

7.3 Styleguides

Any industrial development will be done within certain

design rules. Especially human-machine interfaces are

defined and implemented within a design framework. These

rules and design patterns will be defined in form of a user

interface styleguide.

There are many types and forms of user interface styleguides.

UsER will provide a toolkit for user interface styleguides that

allows to describe any necessary details of design on the

senso-motorical level (e.g. buttons, knobs, levers), the lexical

level (e.g. icons, notions, acronyms), the syntactical level

(e.g. drag&drop, input methods, display structures), the

semantical level (e.g. mapping of colors and symbols to

system states) and the procedural level (e.g. typical operating

sequences like activating or deactivating an automatic

function).

Styleguides may already be supported at least partially in the

current mock-up environment to only allow interaction

design along the defined styleguide. A complete user

interface styleguide module for UsER is under development.

8. CLAIMS, REQUIREMENTS AND FEATURES

Analysis and design have to clarify a system from its early

ideas and goals (claims), through well defined requests

(requirements) into implementable functions (features).

Developers have to be able to track and trace from claims to

requirements to features and vice versa for clarification and

rationales.

UsER enables the analyst, designer or evaluator to formally

create, track and refine such claims, requirements and

features as part of the clarification and specification process

(Fig. 10).

Fig. 10. Hierarchical requirements structures in UsER with

IDs, descriptions, states, priorities and project-specific

grouped categories

8.1 Claims

Claims define the basic ideas and goals of a system. They are

often discussed and seldom documented in real development

processes. UsER allows defining them early and rough, as

well as more elaborated claims and mapping them into

requirements as soon as possible. Claims may be visions,

ideas, requests, assumptions or just beliefs about the system

and operational organization to be developed.

8.2 Requirements

The definition of requirements is the very center of systems

engineering. Requirements are the unique reference points for

contracts as well as releases of systems. Requirements have

to be fulfilled by the solutions. It has to be testable and

decidable whether they are reached or not.

Requirements defined within UsER may be exported through

standardized ReqIF-format, spreadsheet tables or CSV-

format into other development environments and vice versa.

8.3 Features

For a solution, requirements have to be transformed into

features. Designs and implementations are solutions for

requirements. Features may be defined by short descriptions,

by mock-ups or formal descriptions depending on the

complexity and development method.

UsER will first of all give features unique names and enable

the developers to cross-reference them with requirements,

mock-ups, scenarios or external descriptions inside other

documents or tools.

9. EVALUATION

During and after the development process, solutions have to

be checked for their appropriateness and quality, especially

for their usability. For this purpose, UsER provides an

evaluation module consisting of a collection of usability

evaluation methods and tools, like ISONORM (dialogue

criteria conformance test for ISO 9241-110), SUS (System

Usability Scale; a simple usability questionnaire), or NASA

TLX and SEA (both for workload evaluation). Other methods

can easily be added into the framework as needed.

Questionnaires may be refined from a template archive and

activated to be used via a web-based interface for the

interviewees with the given data inputs being collected,

processed and displayed within UsER (Fig. 11).

Fig. 11. Setting up a usability survey with 7-point Likert-

scales for an ISO 9241-110 evaluation (detail)

9.1 Formative Evaluation

Formative evaluation can be performed within UsER at any

time during the development process. This allows for

example to test the usability of a screen design even in a quite

early phase of development based on some mock-ups. Results

will be associated with the design itself to decide about

changes or the release of the design for the next step.

9.2 Summative Evaluation

Summative usability evaluation is the final step before the

release of a system. Application experts, customers and

especially operators will be using the system providing their

evaluations and feedback to be able to decide about the

release status. The results will stay inside UsER, connected to

the special parts tested and available for improvement for

later releases or different customers. Summative evaluation is

a user-centered type of quality assurance concerning the

usability of the system prepared for deployment.

10. DEVELOPMENT APPROACHES

Process control systems have to support the performance of

regular tasks as well as the timely reaction to expected or

even unexpected events. UsER supports the development in

respect to both operational situations.

10.1 Task-Oriented Development

In highly defined work situations there will be predefined

tasks that have to be performed by the operators under well

defined circumstances. The development of task-oriented

systems means mainly to do a task and role analysis and set

up standard operating procedures (SOPs) based on the work

breakdown structure.

UsER may be used for task-based operations in the following

way:

a) specify goals in the form of claims;

b) create a hierarchical task model (HTA);

c) define information objects and artifacts;

d) assign tasks, information and work objects to

organizational roles, positions or automation;

e) set up standard operating procedures (SOPs) through the

task model;

f) create user models as user classes, stereotypes or personas;

g) set up the requirements list;

h) design the human-machine interface as mock-ups;

i) develop refined user interfaces with user interface builder

or graphics editors;

j) define system features and a roll-out plan (revisions);

k) implement the human-machine system;

l) evaluate the human-machine with evaluation instruments

like evaluation of time-to-complete tests for the SOPs,

dialogue principles or load index depending on the

operational requirements and circumstances.

The development of task-based system is the standard

approach in usability engineering and work place design. It

requires a solid analysis and understanding of the underlying

work system as well as the accompanying economical

factors. Even if they mainly address the standard operations,

safety issues have to be incorporated into the analysis and

design methods reflected as well by the SOPs and human-

machine interfaces derived.

10.2 Event-Oriented Development

In case of critical events during operations, another

development approach is known to be helpful. Based on the

analysis of failure modes (FMEA) or the study of incident

and accidents reports, special critical operational

circumstances and situations will be envisioned. The planned

or the current system will be checked for its appropriateness

and as a result of this analysis system revisions or Emergency

Standard Operating Procedures (ESOPs) need to be derived.

With the help of UsER the following development process

might be applied for event-based operations:

a) take an FMEA, an incident or accident analysis report and

define problem scenarios;

b) check the information and work objects (displays and

controls) available to serve the situation and describe an

interaction scenario;

c) identify weaknesses in the existing system by annotating

tasks, responsibilities (roles), screenshots or storyboards;

d) check and improve the task tree as well as the

organization, its roles as well as automation for

appropriate assignment of responsibility or team work;

e) develop an improved system by mock-ups and discussions

of the mock-ups with personas, real operators or domain

experts;

f) derive emergency standard operating procedures

(ESOPs);

g) set up new requirements;

h) create detailed human-machine interfaces with a graphics

editor or other mock-up tool;

i) transform the requirements into functional features or

functional changes;

j) implement the optimized system;

k) evaluate the new system revision with comparative

evaluations like A/B tests, ergonomics evaluation or load

index and compare to previous revisions.

The development of event-oriented control systems is an

ongoing process during operations. Especially incident

reporting and simulator training reveals important input for

iterative improvements. Event-oriented development has to

be as independent as possible from economical requirements

in the sense of Resilience Engineering (Hollnagel et al. 2006;

Hollnagel, 2009). It addresses abnormal situations, as well as

faulty technology or behavior (Reason, 1990; Dekker, 2006,

2007). It will be important for the safety of a system close to

or even outside the standard operations boundaries.

11. CONCLUSIONS AND FUTURE WORK

UsER is a framework, platform and repository for an

integrated and modular development of human-machine

systems with the special scope of usability engineering.

It supports the analysis, design, and evaluation of human-

machine systems through interrelated analysis and design

entities creating a meshed specification of the system to be

developed. The meshed structure can be linearized for

standard documentation and contracting. Various import and

export interfaces allow online or offline connections to other

development environments like software or requirements

engineering frameworks.

The repository extends standard software and systems

engineering environments by providing a broad variety of

standard or specific methods of usability engineering. It

enables the process and motivates the teams for user-centered

development and user interface design thinking.

UsER has been implemented as a Java-, GWT- and MySQL-

based advanced prototype with an open architecture that has

already been used within the industrial development of ERP

systems (business applications) as well as supervisory control

systems (safety critical systems). As a modular system, UsER

allows selecting modules for analysis, design or evaluation as

needed for a specific development process and may be

extended by the integration of new modules for special

application development domains and contexts.

REFERENCES

Annett, J. & Duncan, K.D. (1967). Task Analysis and

Training Design. Occupational Psychology, 41, 211-221.

Carroll, J.M. & Olson, J.R. (1988). Mental Models in

Human-Computer Interaction. In Helander, M. (Ed.),

Handbook of Human Computer Interaction. Amsterdam:

Elsevier, 45-65.

Cooper, A. (1999). The Inmates are Running the Asylum.

Indianapolis: SAMS.

Dekker, S. (2006). The Field Guide to Understanding Human

Error. Aldershot: Ashgate Publishing Ltd.

Dekker, S. (2007). Just Culture. Aldershot: Ashgate

Publishing Ltd.

Herczeg, M. (2001). A Task Analysis and Design Framework

for Management Systems and Decision Support Systems.

ACIS International Journal of Computer & Information

Science, 2(3), September, 127-138.

Herczeg, M. & Stein, M. (2012). Human Aspects of

Information Ergonomics. In Stein, M. & Sandl, P. (Eds.),

Information Ergonomics, Berlin Heidelberg: Springer,

59-98.

Hollnagel, E. (2009). The ETTO Principle: Efficiency-

Thoroughness Trade-Off. Aldershot: Ashgate Publishing

Ltd.

Hollnagel, E., Woods, D.D. & Levenson, N. (Eds.). (2006).

Resilience Engineering - Concepts and Precepts.

Aldershot: Ashgate Publishing Ltd.

John, B.E. (1995). Why GOMS. ACM Interactions. October

1995, 80-89.

Johnson-Laird, P.N. (1983). Mental models. Towards a

cognitive science of language, inference, and

consciousness. Cambridge, MA: Harvard University

Press.

Rasmussen, J. (1984). Strategies for State Identification and

Diagnosis in Supervisory Control Tasks, and Design of

Computer-Based Support Systems. In Advances in Man-

Machine Systems Research, Vol. 1, 1984, 139-193.

Rasmussen, J. (1985). The Role of Hierarchical Knowledge

Representation in Decisionmaking and System Manage-

ment. IEEE Transactions on Systems, Man, and Cyber-

netics, SMC-15(2), 234-243.
Rasmussen, J., Pejtersen, A.M. & Goodstein, L.P. (1994).

Cognitive Systems Engineering. New York: Wiley.

Reason, J. (1990). Human Error. New York: Cambridge

University Press.

Rosson, M.B. & Carroll, J.M. (2002). Usability Engineering.

Scenario-Based Development of Human-Computer Inter-

action. San Francisco: Morgan Kaufmann Publishers.

Shepherd, A. (1998). HTA as a framework for task analysis.

Ergonomics, 41 (11), 1537-1552.

Stanton, N.A. (2006). Hierarchical task analysis: develop-

ments, applications and extensions. Applied Ergonomics,

37(1), 55-79.

Vicente, K.J. (1999). Cognitive Work Analysis. Hillsdale:

Lawrence Erlbaum Associates.

