
International Journal of Computer & Information Science, Vol. 2, No. 3, September 2001
 The International Association for Computer & Information Science (ACIS)

 1

A Task Analysis and Design Framework
for Management Systems and Decision Support Systems

Michael Herczeg

University of Luebeck, Institute for Multimedia and Interactive Systems

http://www.imis.uni-luebeck.de

D-23568 Luebeck, Germany

EMail: michael.herczeg@acm.org

Abstract:

This contribution describes a framework with

organizational and operating concepts for the

management, i.e. supervision and control of complex

dynamic systems (processes), like networks, factories,

power plants or transport systems. This kind of system

operation has also been called supervisory control

[10], [15]. These applications are characterized by a

complex allocation of tasks between several users

(operators) and machine agents (system functions).

For systems to be designed, the concepts of the

framework have to be transformed into application-

specific terms according to the new management

application. This step will create an application-ori-

ented framework to design new management systems

in a way that they are able fulfil the operational and

human requirements to meet the business goals. For

existing systems to be analysed, the entities have to be

transformed into the typical application terms in

respect to these management applications. This will

provide an application-oriented framework for an

analysis to evaluate the system, identify problems,

improve and optimize the system.

This framework has been developed mainly in the area

of telecommunication network management and has

been used to design telecommunication management

systems for digital broadband networks. The concepts

are expected to applicable in other application areas as

well.

Keywords:

Decision Support, Supervisory Control, User Inter-

face, Task Analysis, System Design Work Flow, Work

Scenario, Task, Role, Tool, Managed Object, User

Qualification.

1. Management Systems

A management system is a work system [1].
Management systems deal with the management of the
resources of a dynamic system, called the process. The
work system consists of the following abstract entities
(see Figure 1. Framework Entities):

Managed Objects: resources of the dynamic
system to be managed represented by active
information elements; the set of all managed
objects is called the management information
base (MIB)
Tasks: situations, where the system shall be
supervised or a system state shall be changed
into a defined goal state by the execution of a
work procedure
Roles: interrelated organisational entities in the
management system executing defined tasks
Agents: human operators or machine functions
representing roles; human operators (users) are
defined by their qualifications
Tools: support systems for the execution of tasks

The abstract entities described above are the
concept-layer (a kind of meta-layer) of any
management system. They build the foundation
of the framework to be defined.

International Journal of Computer & Information Science, Vol. 2, No. 3, September 2001
 The International Association for Computer & Information Science (ACIS)

 2

Figure 1. Framework Entities

2. Design Layers

The following outline is based on the concept of
object-oriented system design.

Each of the conceptual entities of a management
system have to be refined into several classes.
Managed Objects will be described as specific
Managed Object Classes, Tasks as Task Classes, etc.
These classes will contain application specific
knowledge about the management system and the
system to be managed. For a real implemented
management system, all of these classes have to be
instantiated into problem-domain specific objects by
assigning real process resources (managed objects).

As a result of this classification and instantiation
process, there are three layers of abstraction in this
framework for operating concepts, the framework
layer, the class layer and the instance layer.

2.1 Framework Layer

The framework layer consists of the application
independent framework entities like managed object,
task, role, agent, and tool. These entities define the
framework itself.

Examples of entities:

Managed Objects: described by the abstract
entity managed-object
Tasks: described by the abstract entity task
Roles: described by the abstract entity role
Agents: described by the abstract entity agent
Tools: described by the abtract entity tool

2.2 Class Layer

The class layer consists of application specific classes
for managed objects, tasks, roles, agents, and tools.

Examples of classes:

Managed Objects: a managed object class, like
equipment
Tasks: a task class, like put-board-into-service
Roles: a class of a role, like network-operator
Agents: an agent class, like technical-staff
Tools: a tool class, like alarm-table

2.3 Instance Layer

The instance layer consists of application related
instantiations of the task classes, role classes, agent
classes and tool classes mainly by assigning specific
managed object instances to attributes of these classes.

International Journal of Computer & Information Science, Vol. 2, No. 3, September 2001
 The International Association for Computer & Information Science (ACIS)

 3

Examples of instances:

Managed Objects: an instance of equipment,
like board-138
Tasks: an instance of put-board-into-service, like
put-board-138-into-service
Roles: an instance of network-operator, like
network-operator-for-region-1
Agents: an instance of technical-staff, like John-
Miller
Tools: an instance of alarm-table, like
equipment-alarm-table

To design or analyse a management system all of these
layers have to be discussed, structured and
documented. This contribution will focus on the
framework layer.

In the case of an analysis of an existing
management system the class layer has to be
reconstructed using the implemented instance layer of
the existing management system. In the case of the
design of a new management system the class layer
has to be constructed based on the framework layer
before the instance layer can be set up.

3. Analysis and Design Procedure

The following procedure outlines steps in the design of
a management system together with its operating
concepts. The order of the steps is a proposal for a
situation when everything is designed from scratch. If
there are already fragments of a system or even a work-
ing system to be optimized or reengineered, some steps
may already be completed. In such a case it should be
analysed at least, whether the existent situation is a
really acceptable satisfying solution.

1. Task-Design: define the task classes and the task
structure

2. Role-Design: define the role classes
3. Task-Allocation: assign task classes to role classes
4. Qualification-Definition: define the operator

classes (may already be defined)
5. Qualification-Allocation: assign operator classes

to role classes
6. Tool-Design: design the tool classes in respect to

the task, role and operator classes
7. Tool-Allocation: assign the tool classes to the task

classes

8. Resource-Assignment: instantiate task classes with
managed object instances

9. Workflow-Design: define, analyse and optimize
the workflow between role classes

10.Role-Assignment: instantiate role classes for task
instances

11.User-Classification: assign operators (real persons)
to operator classes

12.User-Assignment: assign operators to role
instances

This procedure will be performed in an incremental
way. Some concepts will be modelled in a first step
roughly and will be refined in a later iteration. The
application world with its application objects (managed
objects) are expected to be defined prior to this
analysis and design procedure.

4. Managed Objects

System resources are described as managed objects.
They represent the information space of the
application, i.e. the process elements to be managed.

Managed objects will often be named as
application objects or domain objects because they
will usually be described in terms of the application
world to be managed.

Managed object instances are the entities of
systems to be managed. The set of managed object
instances is called the management information base
(MIB) of a management application. The managed
object instances are defined by managed object
classes describing the attributes and methods of their
instances. The system of managed object classes is
called the management information model of a
management application.

To manage a system state operations will be
applied to these resources. The set of states of all
system resources define the system state.

The analysis and design of the management
information model is outside this scope of the design of
management systems and will therefore only be
touched in this contribution. In the area of
telecommunication network management systems it
has been described in detail by the ITU in the X.700-
series [3], [4], [5], [6].

International Journal of Computer & Information Science, Vol. 2, No. 3, September 2001
 The International Association for Computer & Information Science (ACIS)

 4

5. Tasks

Tasks are the result of following business goals. Tasks
result in activities to reach these goals. Only business
oriented tasks will result in profit for the organisation
managing a process. These productive tasks appear in a
direct relationship with the management goals and will
be called external tasks. Other tasks cope with
artificial goals resulting from the implementation of the
process and the tools to supervise and control the pro-
cess. These tasks will correspondingly be called
internal tasks. Many of these internal tasks will be
non-productive, i.e. are not directly related to external
tasks and should be minimized as far as possible [1],
[9].

A detailed task analysis is necessary to be able to
design a work system in way that concentrates on
external tasks and minimizes the creation of non-
productive internal tasks. However, it has to be ensured
that all emerging user activities related to tasks can be
handled in an adequate way, i.e. human operators can
handle the tasks in an efficient and correct way.

Some tasks can be performed by machine agents
(functions) instead of human agents (operators). The
task analysis will give important hints about task
allocation to human or machine operators (automatic
operating functions) [16].

Tasks are usually defined in respect to system
resources (managed objects). Task classes are defined
in respect to managed object classes and task instances
are defined to deal with managed object instances.

5.1 Task Classes

The following characteristics have to be analysed for
each task class:

Purpose: reason and goal of the task
clarifies whether the task is an external or
internal task

Content: description of task content, mainly the
description of the operational procedures applied
to managed objects (at this level of description
represented by the managed object classes)
provides an understanding of the task for system
designers and operators

Subtasks: decomposition of the task into
subtasks
provides the task structure

Supertasks: tasks the described task is part of
will only be available if task is a subtask of some
other tasks

Input: input data needed to perform the task
defines the flow of data upstream of the workflow

Pre-State: system state before task can be
performed
allows to check automatically by the tools
whether they may be applied

Output: output data created by the execution of
the task
defines the flow of data downstream of the
workflow

Post-State: system state after task has been
performed
allows to check automatically by tools whether
the application of the tool has been successful

Frequency: frequency of task in the spectrum of
all tasks
a high frequency shows that more efficient tools
are needed to perform the task

Repetitivity: direct repetitions of the task
a high repetitivity shows that tools with repeat
(again) functions are needed to perform the task
efficiently

Urgency: dynamic priority of task in relation to
other tasks that shall be performed at a specific
time
shows whether the task needs high attention of
the operator or should be allocated as a machine
function performed automatically when
necessary

Severity: static priority (importance) of task or
situation in the spectrum of all tasks
shows whether the task is of high importance for
the work result and needs high attention of the
operator and tools should check pre-state and
post-state

International Journal of Computer & Information Science, Vol. 2, No. 3, September 2001
 The International Association for Computer & Information Science (ACIS)

 5

Security: requirements for the authorized
execution of the task
security is strongly related to roles and their
access rules

Safety: requirements for the correct execution of
the task
safety implies that the execution of the task
should be accompanied by automatic checks or
system support in respect to activity order and
state changes

Timing: time requirements for the execution of
the task (e.g. duration)
high timing requirements show that high
concentration of operator and efficient or highly
automated real-time tools are needed

Tools: reference to tool classes
to specify the tools which shall be used to
perform the task

Agent: reference to agent class
to specify the knowledge and skills of human or
machine operators required to perform the task

What has been described above are task classes. These
task classes may be instantiated with real process
resources (managed object instances) that shall be
managed by the task.

The task classes described can be structured into a
task class inheritance hierarchy. This allows to factor
out general characteristics into superclasses and to
represent similarity of tasks. This inheritance structure
is different to the task structure, which will be
described in the next section.

The task description gives lots of hints about the
allocation of tasks. Especially time and safety related
attributes will imply to a high extent whether the task
can be performed by more or less skilled operators or
has to be allocated to machine functions to be
performed properly.

5.2 Task Structures

Tasks will often be refined in a hierarchical way (see
Figure 2: Task Structure). The hierarchy represents the
breakdown of each task into a structure of subtasks.

Tasks should be substructured (refined) into lower
level tasks (subtasks) if one layer of tasks will not be

sufficient to cope with the complexity of an application
area. This management task substructure will usually
lead to a directed decomposition graph instead of a
simple hierarchy since some lower level tasks will be
identical for different higher level tasks.

There are several ways of combining the subtasks
to realize the supertask. Theses types of combination
can be viewed as control flow operators:

sequence: the task is done by performing the
predefined sequence of subtasks
tasks which are performed in a predefined
sequence will be called task-phases
parallel: the task is done by performing the
subtasks in parallel
tasks which are executed and controlled in
parallel will be called task-threads
choice: the task is done by performing the
subtasks in any sequence
tasks which may be selected out of a set of tasks
will be called task-options

In any situation the execution of a task may be
dependant on certain decisions based on the current
state of managed objects and the current goals. This
influences whether there will be none, one or several
tasks that can be executed within any of the subtask
combination concepts described above. Depending on
the availability of explicit criteria about the selection of
the next tasks, tasks may be more or less easily
allocated to a machine in the sense of automatic
execution of several tasks. The complexity of the
decision about the next task characterizes the openness
of the work to be done.

Tasks do not need to be substructured into
subtasks, i.e. some tasks may have subtasks whereas
others are defined without subtasks. The process of
refinement may stop at any task, when this task shall
be viewed as an elementary task at the moment for
some reason, e.g.:

• there is a system function which will support the
task directly

• the task will be performed by some basic manual
activity

• the task will be performed automatically by some
system function

International Journal of Computer & Information Science, Vol. 2, No. 3, September 2001
 The International Association for Computer & Information Science (ACIS)

 6

• the task is of no further interest in the analysis and
design process

As the task analysis will be an iterative process, the
refinement may be stopped and continued when new

information is available throughout the analysis and
design process.

Figure 2: Task Structure

5.3 Task and System Modelling

The definition and documentation of the task structure
and the task descriptions may be difficult and time
consuming activities on the road to clear and efficient
operating concepts. Meanwhile, there are certain
experiences how it may be done without getting lost in
the complexity and volume of tasks to be analysed and
described.

The first two concepts (management areas and
management phases) lead to the high level work
structure of a task hierarchy and the second two
concepts (management abstractions and
management decompositions) guide the definition of
the lower level task structure with strong relations to
the resources of the process being managed and the
system functions to be provided (see Figure 3: Task
Model).

International Journal of Computer & Information Science, Vol. 2, No. 3, September 2001
 The International Association for Computer & Information Science (ACIS)

 7

Figure 3: Task Model

5.4 Management Areas

Management areas define global sections for tasks to
be distributed over high level organisational
structures. Different management areas will usually be
associated with different roles or even different
departments of an organisation. Therefore,
management areas stem from high level
responsibilities within an organisation. They will
usually describe specific problem areas in respect to
management tasks.

For example in many technical systems the
following management areas have been widely used
[7]:

• Configuration-Management

• Fault-Management

• Performance-Management

• Security-Management

• Accounting-Management

5.5 Management Phases

Activities within management areas will often be
structured into several main operational phases. These
phases will describe activities over certain time
frames. The activities in different phases can be
performed by one or several roles. This determines
mainly whether there will exist a workflow through
several roles or groups of roles of an organisation.

Typical examples of phases in the management of
technical systems will be:

1. installation
2. operation
3. maintenance

5.6 Management Abstractions

Activities can be organized in several layers along an
abstraction hierarchy, starting from the highest layer
dealing with the intention and purpose of the work and
ending on the physical layer with all of the possible
activities on the process resources. Specific manage-
ment operations and presentation of the system

International Journal of Computer & Information Science, Vol. 2, No. 3, September 2001
 The International Association for Computer & Information Science (ACIS)

 8

resources (managed objects) will appear on each of
this system layers. The lower the layer the more
physical or naturalistic the presented or manipulated
attributes of the managed object will be. The higher
the layer the more logical or purpose-oriented
attributes will be shown and manipulated.

Management of a system should primarily be
focused on the layer of the purpose of the system.
Only in cases where a detailed analysis or a fine-
grained configuration has to take place, the lower
layers of the system will be visited and manipulated
down to the layer where the problem at hand can be
solved completely or the task execution will be
aborted because there is no solution.

In the context of process supervision and control a
multi-level abstraction hierarchy has been described
by Rasmussen and others [12], [13], [14] (see Figure
4: Abstraction Levels (according to Rasmussen)):

Functional Purpose: production flow models,
control system objectives
Abstract Function: causal structure, mass,
energy and information flow topology
Generic Function: standard functions and
processes, control loops
Physical Function: electrical, mechanical,
chemical processes of components and
equipment
Physical Form: physical appearance and
anatomy, material and form, locations

This structure provides a natural way to distinguish
between external tasks and internal tasks. To make it
clear, only tasks on the level of the functional purpose
are external tasks. All other layers create
implementation dependant and therefore internal tasks
which may create non-productive additional burden to
the operation of the system. All of these lower level
tasks should be allocated to machine functions if
possible and safe.

Figure 4: Abstraction Levels (according to Rasmussen)

International Journal of Computer & Information Science, Vol. 2, No. 3, September 2001
 The International Association for Computer & Information Science (ACIS)

 9

5.7 Management Decompositions

As a second dimension orthogonal to the abstraction
dimension there is the decomposition of the system
leading from the whole to the parts of a system
resource. To structure the system resources into part
hierarchies is a natural way of modelling,
understanding, and handling large and complex
systems. The decomposition structure may be used to
focus on parts of the whole system and a hierarchy of
decomposition helps to structure the whole system
into task-oriented substructures.

It should be noticed that this decomposition dimension
is not the same as the abstraction dimension since the
decomposition may be defined within each of the
abstraction layers. The whole and the parts of a
resource can be shown on the same level of abstraction.
Nevertheless, decomposition is a kind of structural
abstraction concept adressing mainly managed objects.

6. Roles

The set of interrelated roles is analysed in an
organisational analysis. Roles are the placeholders for
operators (end users) and are describing their function
in the work system.

Roles will generally be grouped into hierarchical
structures creating organisational entities like teams,
departments and divisions.

Roles will be defined as role classes. Several role
instances can be created for one role class. Each of
these roles instances will perform its specific task
instances of the same task class (i.e. the role instances
will perform the same tasks applied to different
managed objects).

6.1 Role Classes

The analysis of roles has to clarify the following
attributes of roles:

Description: description of the roles function
within the organisation
Substitute: role to take over tasks in case of role
is out of operation

Tasks: references to the task classes which have
to be performed by the roles
the tasks to be performed by a role imply the
necessary qualifications of an agent representing
a role

Pre-Roles: roles to be active before this role will
be active
Input: information needed by a role to perform
its tasks
Post-Roles: roles to be activated after this role
has been active
Output: information created by a role when
performing its tasks
Communication: which type of communication
media is used between interacting roles to pass
output to be used as input by another role
tells about the media used to receive input and
deliver output

Tools: reference to tool classes, needed by a role
to perform its tasks
the role’s tools are defined indirectly by the set of
all tools needed by the role to perform its tasks
and must not be documented explicitly; this gives
important ideas about consistency of tools and
integration of tools to higher level tools for a
role

Agent: reference to agent class
to specify the knowledge and skills of human or
machine operators required to represent the role

The task-related characteristics (Input, Output, Tools)
will usually be defined in the task analysis and may be
summarized in the organisational analysis related to the
roles.

6.2 Task Assignment to Roles

In the process of the task allocation task classes have
to be assigned to the role classes. After this
assignment role classes will usually be instantiated
with different task instances, to manage different
system resources (managed object instances). In
certain management systems it will be comfortable to
instantiate each role class once, leading to exactly one
role instance per role class. This two-step assignment
on the class and the instance layer has to make sure
that

International Journal of Computer & Information Science, Vol. 2, No. 3, September 2001
 The International Association for Computer & Information Science (ACIS)

 10

• each task class is assigned to at least one role class,

• each task instance is assigned to at least one role
instance,

• several role instances which will manage the same
task instances have to apply operational rules to
avoid activity conflicts by more than one operator
managing the same system resource at the same
time and

• security and authorization concepts have to ensure
that role instances will only be able to manage the
resources defined by their task assignment.

Assignment of task classes may take place in an
efficient and easy to manage way, by making use of
the task structure (see Figure 5: Example of a Task
Assignment to Role Classes).

Figure 5: Example of a Task Assignment to Role Classes

The assignment of tasks may be defined in a flexible
and dynamic way. This creates some burden on the
organisation but allows to optimize the management
system in respect to operator availability and
competence.

It has to be emphasized that the assignment of
tasks has to take human factors of workplace design
into account [1]. In respect to task assignment it has to
be ensured that tasks will be interesting and demanding
instead of monotonous and primitive from an
operator’s point of view. As a consequence, the
assignment of task classes to role classes and the
assignment of operator classes to role classes are

highly interrelated and have to be iterated until a
satisfying constellation has been found.

6.3 Workflow between Roles

Roles interact with other roles in many ways:

• a role creates output which is needed as input for
another role

• a role performs a task and creates a system state
which is needed by another role

• a role activates another role by sending an
activation event

International Journal of Computer & Information Science, Vol. 2, No. 3, September 2001
 The International Association for Computer & Information Science (ACIS)

 11

These interactions can be described by workflow
relations between role classes. In the instantiated roles
these relations will be used to exchange data and
control by certain communication methods.

Roles interact with the resources of the process:

• managed objects are manipulated by roles through
the execution of tasks using tools

• roles receive notifications from the process
indicating changes (events) in the system

By these interactions a dependency network of
managed objects, roles, tasks and tools is created (see
Figure 6: Workflow). As a result, tasks are dynamically
chained and brought into a sequence, starting with
some initial tasks and usually ending with some final
tasks or principally running forever. This flow of data,
events and control between classes and their execution
of tasks is called workflow. Specific role sequences
from a start to an end state are called routes. Routes
represent higher order tasks being performed by a set
of roles, sometimes called a team.

In an organisation consisting of many roles,
independent tasks will usually be performed in parallel
by these roles. It is an important optimization problem
to maximize the grade of parallelisation in the
organisation. However, the following workflow
problems can be observed or anticipated:

• a role is blocked by waiting for input from one or
more other roles

• a role is blocked since the system state does not
allow to perform tasks by this role

• a role is not able to perform some task as a result of
tool problems

• a role is not executing some task because it did not
receive an activation from another role or from the
process

• a role needs more time than planned to perform a
task

• a role needs less time than planned to perform a
task (the role capacity is not used effectively)

• a role has an input overflow (it is not able to
perform tasks as fast as input data is received)

• a role has an output overflow (it is not able to get
rid of produced output since the output queue is
full)

Operating concepts have to be designed to avoid these
problems or to provide working procedures to solve
them.

6.4 Workflow Scenarios

A worksystem can be defined by a set of routes
describing the characteristic task sequences. Routes
may be described by workflow scenarios showing the
workflow through several role classes and the usage of
tools supporting the execution of the tasks. The roles
have to be displayed in certain cases as role instances
since it is possible that a scenario will show several
instances of the same role.

Work scenarios may be described in textual form
showing lists of tasks or in graphical form displaying
the dependency network of roles, tasks and tools (see
Figure 7: Example of a Workflow Scenario).
Numbered arrows denote the sequence of tasks.
Scenario graphs are directly derived from Figure 6 by
dropping the presentation of managed objects. A fur-
ther simplification can be reached by dropping the
presentation of tools as well. To show the tools may be
helpful for the design of the tools, since it will be
visible which tools have to be used in a work context
simultaneously.

It will usually be impossible to show all scenarios
which may occur in real worksystem. In this case it
will be helpful to describe the most important key
scenarios, with the following characteristics:

• many roles involved

• complex interrelations between roles

• substantial part of the work time spent

• most important or most sensitive tasks being
performed

• most complex tooling situation

International Journal of Computer & Information Science, Vol. 2, No. 3, September 2001
 The International Association for Computer & Information Science (ACIS)

 12

Figure 6: Workflow

Figure 7: Example of a Workflow Scenario

International Journal of Computer & Information Science, Vol. 2, No. 3, September 2001
 The International Association for Computer & Information Science (ACIS)

 13

7. Agents

An agent analysis describes or defines the
characteristics of human operators (user analysis) or
machine operators (functional system analysis)
representing the roles of a management system. Human
agents (users, operators) will be characterized by
operator classes.

7.1 Operator Classes

The following characteristics representing one or more
specific roles have to be defined:

Description: description of the task domains and
qualifications of the operator class
Education: expected education for operators to
be affiliated for the roles

Common-Knowledge: general knowledge
background (general qualifications of operators)
Application-Knowledge: application knowledge
needed for the execution of tasks (application
qualifications of operators)
Skills: sensomotorical abilities in the handling of
tools

It will be helpful to structure the operator classes into
an hierarchy of classes, where members of the more
general classes will be able to handle all tasks of the
more specific classes which are derived from the
classes they belong to (see Figure 8: Operator Classes
and Operators). Management tasks and tools have to be
designed and evaluated in accordance to the
characteristics of the operator classes.

Figure 8: Operator Classes and Operators

7.2 Operator Class Assignment to Role Classes

For every role there has to be an associated agent
class, in case of a human agent an operator class. The
selected agent class has to provide abilities to cope
with the tasks related to the role.

The task analysis will provide requirements
(agent class attributes) for the operator classes that can
be assigned for a role class.

8. Tools

Tools are support systems for the execution of tasks by
operators. They should empower operators to perform

the tasks in an efficient and correct way. In the area of
interactive computer systems the tools will be whole
application systems or dialogs within application
systems.

Like in the case of tasks, roles, and agents, tools
have to be structured into tool classes (e.g. alarm-
table) and tool instances (e.g. equipment-alarm-table).

The definition, specification and implementation
of specialized tools (tool classes) should be derived
from the role classes, their associated task classes and
the operator classes, i.e. tools should be defined quite
late in the whole development process.

International Journal of Computer & Information Science, Vol. 2, No. 3, September 2001
 The International Association for Computer & Information Science (ACIS)

 14

In many real situations tools will be there before
the roles, tasks and operators are specified. If this is the
case and there is no chance to change or replace the
tools, the roles, tasks and operator qualifications will
be determined heavily by these tools. This will lead
usually to management systems of minor quality and
should be avoided, since the cost of operating the
system with these tools may be high and may even
after a short period of operation even be higher than the
cost for new tools.

The worst mistake which can be encountered
commonly is, that new tools are designed before an
analysis of tasks, roles and operators has been done,
i.e. tools are designed without real application and
organisation requirements.

Computer-based tools supporting the management
of processes are sometimes called “management
system” themselves, in the sense of systems to manage
the process. Please note the more general meaning of
“management system” incorporating at least
application objects, tasks, roles, agents, and tools in
this document.

In the area of telecommunication systems,
management tools are structured in networks and are
called the TMN (Telecommunication Management
Network) [7]. In other application context they are
sometimes called decision support systems or process
control systems [12]. This framework has also be used
for the analysis and design of tools in general business
areas, with no emphasis on supervision and control of
dynamic systems.

8.1 System Functions

Tools can be defined as sets of system functions each
of them supporting the execution of a specific task by
a user. Therefore the description of system functions
can be viewed as a hierarchical decomposition of tools
into sub-tools.

When we talk of system functions in respect to
task analysis we always denote system functions from
the operators point of view. These may not be
necessarily equivalent to the system functions
implemented in the system. For the operators tools
provide specific perspectives or views to the system

structure and the system functionality. Via the visible
system functions the operators perform operations to
solve the tasks to be done.

This kind of more functional analysis may take
place after the task analysis has been done to a certain
extent. The definition of functions is tightly coupled
with the concepts of abstraction and decomposition of
the system resources to be managed (see
corresponding sections in this paper).

8.2 Tool Classes

The following characteristics have to be defined for
each tool class:

Description: general description of the tool and
its purpose
Tasks: list of tasks to be supported by tool
Input: input needed to apply tool
Output: output provided by tool
Sub-Tools: subordinate tools
Managed Resources: managed resources
(managed objects) to be presented or
manipulated
User Interface: description of the rules for the
system presentation and the way how actions
have to be performed:
this defines the look&feel of the interactive
components of the management system
the user interface is defined by the following
concepts Dialogs, Information Coding and I/O-
Devices

Dialogs: syntactical rules of the user interface
described as dialogs
(e.g. window handling, menu handling, data
exchange, printing, user queries, customization
dialogs, help dialogs, history dialogs)

Information Coding: description of presen-
tation types and presentation characteristics
(e.g. naming, fonts, colors, icons, graphics,
layouts, keybindings, formats)

I/O-Devices: description of the physical I/O-
devices
the physical characteristics of keyboard, mouse,
screen and other input/output devices

International Journal of Computer & Information Science, Vol. 2, No. 3, September 2001
 The International Association for Computer & Information Science (ACIS)

 15

8.3 Tool Class Assignment to Role Classes

The assignment of tools to roles is predetermined by
the provision of tools for the tasks the role has to
perform. Therefore the tool assignment to roles will be
done implicitly through the tool-task assignment.

Since usually many tasks will be performed by a
role, the role’s tools should not be just the sum of all
tools that support these tasks. Instead of this, the tools
should be optimized for the spectrum of all tasks to be
performed. As a result of this optimization a tool
environment has to be created, where all task oriented
tool classes are integrated.

Through the tool assignment to roles it may show
up, that a role will be confronted with a large number
of tools or with rather complex ones. This may have
impact to the operator classes assigned to these roles
or may result in a reallocation of tasks between several
roles.

9. References

 [1] M. Herczeg, “Software-Ergonomie - Grundlagen der
Mensch-Computer-Kommunikation”. Addison-
Wesley-Longman and Oldenbourg Verlag, Bonn,
1994.

 [2] M. Herczeg, “A Task Analysis Framework for
Mangement Systems and Decision Support Systems”.
In Proceedings of the AoM/IAoM. 17th International
Conference on Computer Science, Journal of
Computer Science and Information Managment
(CSIM), The International Association of Manage-
ment (IAoM) and Maximilian Press Publisher, 1999,
pp. 29-34.

 [3] ITU, “Management Framework for Open Systems
Interconnection (OSI) for CCITT Applications”. ITU-
T Recommendation X.700, International Telecommu-
nication Union, Nov. 1992.

 [4] ITU, “Common Management Information Service
Definition for CCITT Applications”. ITU-T
Recommendation X.710, International Telecommu-
nication Union, 1991.

 [5] ITU, “Information Technology - Open Systems
Interconnection - Structure of Management
Information: Management Information Model”. ITU-
T Recommendation X.720, International Telecommu-
nication Union, Jan. 1992.

 [6] ITU, “Information Technology - Open Systems
Interconnection - Systems Management: Object
Management Function”. ITU-T Recommendation
X.730, International Telecommunication Union, Jan.
1992.

 [7] ITU, “Overview of TMN Recommendations. ITU-T
Recommendation M.3000”, International Tele-
communication Union, Oct. 1994.

 [8] B. Kirwan, L.K. Ainsworth, “A Guide to Task
Analysis”. Taylor & Francis, 1992.

 [9] T.P. Moran, “Getting into a System: External-Internal
Task Mapping Analysis”. In A. Janda (Editor),
Proceedings of the CHI-83, Human Factors in
Computing Systems, Murray Hill, NJ, 1983, pp. 45-
49.

 [10] J. Rasmussen, “Strategies for State Identification and
Diagnosis in Supervisory Control Tasks, and Design
of Computer-Based Support Systems”. In Advances
in Man-Machine Systems Research, Vol. 1, JAI Press
Inc., 1984, pp. 139-193.

 [11] J. Rasmussen, “The Role of Hierarchical Knowledge
Representation in Decisionmaking and System
Management”. IEEE Transactions on Systems, Man,
and Cybernetics, Vol. SMC-15(2), March/April 1985,
pp. 234-243.

 [12] J. Rasmussen, L.P. Goodstein, “Decision Support in
Supervisory Control”. Technical Report M-2525,
Risø National Laboratory, Roskilde, Denmark, Aug.
1985.

 [13] J. Rasmussen, L.P. Goodstein, “Information
Technology and Work”. In M. Helander, editor,
Handbook of Human-Computer Interaction, Elsevier
Science Publishers B.V. (North Holland),
Amsterdam, 1988, pp. 175-201.

 [14] J. Rasmussen, A.M. Pejtersen, L.P. Goodstein,
“Cognitive Systems Engineering”. John Wiley &
Sons, New York, 1994.

 [15] T.B. Sheridan, “Supervisory Control”. In G.
Salvendy, editor, Handbook of Human Factors, John
Wiley & Sons, New York, 1987, pp. 1243-1268.

 [16] T.B. Sheridan, “Task Allocation and Supervisory
Control”. In M. Helander (editor), Handbook of
Human-Computer Interaction, Elsevier Science
Publishers B.V. (North Holland), Amsterdam, 1988,
pp. 159-173.

International Journal of Computer & Information Science, Vol. 2, No. 3, September 2001
 The International Association for Computer & Information Science (ACIS)

 16

Michael Herczeg received his M.S. (Diploma) and Ph.D.
degrees in computer science from the University of
Stuttgart (Germany) in 1983 and 1986. From 1988 to
1996 he was a manager in software development
departments in the telecommunication industry at Bosch
Telecom and Alcatel.
Since 1996 he is professor for computer science and the
director of the Institute for Multimedia and Interactive
Systems at the University of Luebeck in Germany.
He is a member of IEEE, ACM, AAAI and the vice-
chairman for Human-Computer-Interaction of the
German Informatics Society (GI) and the German
SIGCHI (ACM).

