
The Usability Engineering Repository (UsER)

Marc Paul, Amelie Roenspieß, Tilo Mentler, Michael Herczeg

Institut für Multimediale und Interaktive Systeme (IMIS)

Universität zu Lübeck

Ratzeburger Allee 160

23562 Lübeck

paul@imis.uni-luebeck.de

roenspiess@imis.uni-luebeck.de

mentler@imis.uni-luebeck.de

herczeg@imis.uni-luebeck.de

Abstract: The Usability Engineering Repository (UsER) is a tool system designed

and implemented in prototypical state to support the analysis, design and

evaluation of interactive systems. For this purpose, UsER provides method

modules covering different aspects of analysis, design, implementation and

evaluation. While created in a linear, document-like structure, contents can be

interlinked in order to point out semantic interrelationships, ease navigation and

allow tracing requirements forward and backward in the process. The modules can

be configured and used as needed and none of them is mandatory. We will

introduce UsER using the Human-Centered Design (HCD) Process as example.

1 Introduction

Various development processes for software engineering exist. However, the user-

centered analysis, design and evaluation of interactive systems are deficiently taken into

account in many projects. Either the process model does not support considering users,

tasks and overall context or integrated tooling is missing. We combined several

approaches in the areas of Software Systems Engineering, Requirements Engineering

and especially Usability Engineering to support the whole process of development. The

current result is an analysis and modelling environment as development repository called

UsER (Usability Engineering Repository). It allows to flexibly combine different tools

and methods depending on project-specific needs as well as to trace and reuse all

information raised during the development process. UsER supports the process of

human-centered design (ISO 9241:210) according to the six key principles:

1. the design is based upon an explicit understanding and documentation of

users, tasks and context;

2. stakeholders can be involved throughout design and development;

3. the design is driven and refined by user-centered formative evaluation;

4. the process is iterative;

113

5. the design addresses the whole user experience;

6. the design team provides multidisciplinary skills and perspectives.

Most software developing companies meanwhile recognize how important usable

software is for their customers, but not how to reach this goal. Usability is not simply an

additional requirement to be implemented at the end of the development. Usability

Engineering provides a wide range of methods and systematic approaches for the support

of development, for example the Goal-Directed-Design [CRC07], the Usability

Engineering Lifecycle [Ma99] or the Human-Centered Design (HCD) Process [ISO11],

to name but a few. All of these need to be applied throughout the whole development

process. We decided to design and develop UsER as a modular tool environment so it

can be adapted flexibly to any existing process.

2 UsER Modules in a Sample Process

To provide a systematic and predictable approach to software development, we support

every step of the HCD process (as an example process) with certain modules (see Fig.

1). In order to benefit from this process, all of its results may be transferred to the

implementation process. Requirements are particularly well suited for this task.

Figure 1: Extended Human-Centered Design Process

A UsER module supports certain aspects of a usability engineering method. Information

gathered in one module can be interlinked with information in other modules. These

references help to understand development decisions made during analysis, design or

evaluation, as they can be retraced directly from the requirements concerned.

114

A development project in UsER is organized as a linear structure like a typical

development document. Each chapter or section provides the functionality of a specific

module (see Figure 2). These can be arranged via drag&drop to model contract and

development documents.The resulting structure itself can be stored and later reused as a

template for future projects. The modules realized so far support analysis and design as

well as requirements management throughout the whole software development process.

Figure 2: Selected combination of modules in UsER

2.1 Analysis of the Domain and the Users

Hereafter, we will have a look at the functionality of some modules following the

approach of HCD.

User Analysis

In order to understand the context in which application software is supposed to be used,

it has to be analyzed together with the stakeholders. The first idea for this module was to

create and manage personas [CRC07, PA06], which could then be reused in the other

modules. During development we realized that it would be helpful and practical

classifying user descriptions on different levels of detail [PA06]. User classes or less

abstract stereotypes can now be created as organizational roles or target groups. The

information collected in user classes can then be reused by inheritance and refined for

more detailed user descriptions. Thus, user descriptions can be defined on an abstraction

level according to the needs of the project [PA06]. Additionally, the module has a

progress bar indicating roughly how much important information has already been

115

specified in the user description. Including field data can be important for user

descriptions. UsER supports this by providing so called “behavioral variables” [CRC07].

These are user attitudes and aptitudes which are relevant for the project, e.g. whether the

users prefer simple interfaces over customizable ones. The answers are mapped onto a

bidirectional scale, visualizing trends and clusters which can be used to describe

characteristics of fictional users based on field research data. The data might even be

gathered semi-automated from an evaluation module. Specified for single or several

projects, user descriptions also contain user goals, which can become requirements in

order to be taken into account for the later specification. It is indispensable to determine

and analyze the tasks future users are supposed to carry out with the system [Co99,

He09]. The module for user analysis already allows task description on an abstract level,

also called “external tasks” [He09] in operational contexts. These can be described in

more detail in the module for task analysis, while the artifacts used can be specified in

the module for artifact models.

Task Analysis

Tasks may be decomposed into subtasks using the model of Hierarchical Task Analysis

(HTA) [AD67]. The integrated list editor allows direct graphical manipulation of the tree

representation as well as keyboard-only input. HTA is an effective tool for visualizing

and understanding tasks [Be10] as it shows tasks in the context of their higher purpose.

A task description contains some basic information like pre- and postconditions,

duration, criticality etc. As mentioned before, artifacts (work objects) required for a task

can be described in a module of their own. Additionally references to organizational

roles may be established, which allow the description of team-based tasks and lead to the

method called HTA-T (HTA for Teams). A UsER-wide component allows interlinking

any entities of all modules.

Artifact Models

From the user’s perspective, it often is not the application which is relevant but the work

objects to be manipulated [PA06] like documents or physical work objects. UsER

supports the modeling of artifacts with names, an optional description and arbitrarily

configurable attributes.These can serve as a basis for information models or help to

describe detailed context information by linking to other modules, e.g. for defining who

in an organization works with which artifacts or for which task certain artifacts are

required.

Organization Analysis

Information about operational structures is often depicted in form of organization charts.

The handling of this module is similar to existing applications like Microsoft Visio.

Organization units, roles and staff positions can be described in this module. Every piece

of information already collected – e.g. users or tasks – can be assigned to the elements of

the organization chart to get a good overview and deeper understanding.

116

Scenarios

Alternatively or additionally it is possible to describe the application in a more informal

textual form. Inspired by the approach of Scenario-based Design by Rosson and Carroll

[RC01], this module supports the description of problem scenarios. Furthermore, it

allows to enrich every scenario by adding pre- and postconditions. All information

collected so far (users, tasks, etc.) can be linked to these descriptions. This module is

also suitable for the transition to the next step of the HCD process. As a rich text

application the module allows to include graphics and other media.

2.2 Specifying Requirements

For a comfortable transition to the next step of the HCD process there is an interface

integrated in the scenario module for deriving requirements from each problem scenario.

Here it is important to articulate these requirements in an abstract way like

recommended by Goal-oriented Requirements Engineering [La00, La01, Po08]. All

requirements gathered from the scenario module can be processed inside this module to

create formal requirements. It will be possible to import or export requirements from or

into other requirements engineering environments through the standardized ReqIF-

format.

The requirements module collects all requirements within one project in a sortable table.

It allows decomposing a requirement into sub-requirements. Furthermore, it is possible

to add more information to the requirements, like source, reason, type (bug, new feature

etc.) or a category to sort the requirements by system components.

2.3 Create Solutions and Refine Requirements

The idea in this step of the HCD process is to refine the abstract requirements (goals)

previously collected by describing the activities in a textual way. These textual

descriptions (“design scenarios” [RC01]) work well for discussing solutions with the

stakeholders. They are used to specify how a goal can be met [Ro98]. Because of the

different ways imaginable for achieving a goal, it should be possible to describe whole

use cases with a main case and alternative cases. The module we are using for this step is

the scenario module already used for describing the problem situation at the beginning of

the process. To attach several scenarios to one use case it is possible to include them in

different chapters within a project. Scenarios can be interlinked using the hypertext

function. For refining the scenarios continuously we integrated the external mockup tool

Balsamiq® which supports the fast and flexible creation of low fidelity prototypes.

2.4 Evaluate the Solutions

Two of the key principles of HCD are involving the user and evaluating the developed

solutions together with them. To support this as well as an iterative refinement process

we integrated an evalution module which allows formative and summative evaluation of

the software using standardized or specialized questionnaires together with an annotation

117

function which allows comments for every element of content. By this, solutions can be

collaboratively refined and iterated. As the results of questionnaires are shown in UsER

and the annotations are sorted chronological, decision processes can be retraced. When a

solution finally meets the user requirements, the concepts can be transferred to the

developers for implementation.

3 Summary and Future Work

The Usability Engineering Repository (UsER) is an integrated modular framework to

support various user centered development methods and processes for interactive

systems in a flexible way. Modules for user, task and organizational analysis can be

combined with modules for scenarios, interaction design or evaluation. As an open

architecture UsER can be extended by additional modules. For instance, we are currently

working on tool support for the analysis, design and evaluation of safety-critical systems.

References

[AD67] Annett, J. and Duncan, K. Task analysis and Training Design. Occupational Psychology.

41, July, 1967, pp. 211–221.

[Be10] Benyon, D. Designing Interactive Systems: A Comprehensive Guide to HCI and

Interaction Design. Harlow, England: Pearson Education, 2010.

[Co99] Constantine, L. Software for use: A practical Guide to the Models and Methods of usage-

centered Design, 1999.

[CRC07] Cooper, A., Reimann, R. and Cronin, D. About Face 3: The Essentials of Interaction

Design, 2007.

[He09] Herczeg, M. Software-Ergonomie: Theorien, Modelle und Kriterien für gebrauchs-

taugliche interaktive Computersysteme. München: Oldenbourg Wissenschaftsverlag,

2009.

[ISO11] International Organization for Standardization. ISO 9241-210:2010 Human-centred

Design for Interactive Systems, 2011.

[La01] Lamsweerde, A. Goal-Oriented Requirements Engineering : A Guided Tour. Proceedings

of the Fifth IEEE International Symposium on Requirements Engineering, 2001.

[La00] Lamsweerde, A. Handling Obstacles in goal-oriented Requirements Engineering. IEEE

Transactions on Software Engineering, 10, 2000, pp. 978–1005.

[Ma99] Mayhew, D.J. The Usability Engineering Lifecycle : A Practitioner’s Handbook for User

Interface Design. San Francisco, CA: Morgan Kaufmann, 1999.

[Po08] Pohl, K. Requirements Engineering. dpunkt.verlag, 2008.

[PA06] Pruitt, J. and Adlin, T. The Persona Lifecycle: Keeping People in Mind throughout

Product Design. San Francisco, CA: Morgan Kaufmann, 2006.

[Ro98] Rolland, C. Guiding Goal Modeling using Scenarios. IEEE Transactions on Software

Engineering 12, 1998, pp. 1055–1071.

[RC01] Rosson, M. and Carroll, J.M. Usability Engineering: Scenario-Based Development of

Human-Computer Interaction. San Francisco, CA: Morgan Kaufmann, 2001.

118

