
Modelling with Problem Frames: Explanations

and Context in Ambient Intelligent Systems

Anders Kofod-Petersen1 and Jörg Cassens2

1 Department of Computer and Information Science,
Norwegian University of Science and Technology,

7491 Trondheim, Norway
anderpe@idi.ntnu.no

2 Institute for Multimedia and Interactive Systems (IMIS),
University of Lübeck,

23562 Lübeck, Germany
cassens@imis.uni-luebeck.de

Abstract. When designing and implementing real world ambient intel-
ligent systems we are in need of applicable information systems engineer-
ing methods. The tools we find in the intelligent systems area focus on the
knowledge engineering parts, whereas traditional software engineering
techniques are usually not designed with the peculiarities of intelligent
systems design in mind. This holds in particular for explanation-aware
intelligent systems. This work looks at problem frames for explanations
and investigates how problem frames can be used to elicit, analyse, and
specify these specific requirements. The point of departure is an exist-
ing ambient intelligent information system for the hospital ward domain.
The work presented here analyses how such a system can be redesigned
with a focus on explanation-awareness.

1 Introduction

Ambient intelligence describes environments where human beings are surrounded
by intelligent artefacts supported by computing and network technology. Such
environments augment everyday objects such as furniture and clothes. In addi-
tion, an ambient intelligent environment should be aware of the presence of a
person, perceive the needs of this person, and respond to them in an unobtrusive
and intelligent manner [1]. Ambient intelligence is laying in the intersection of
pervasive computing, ubiquitous computing, and artificial intelligence.

The ability to explain itself, its reasoning and actions, has been identified as
one core capability of any intelligent entity [2]. The question of what is considered
to be a good explanation is context dependent [3], leading to the necessity to
design the explanatory capabilities of an ambient intelligent system together
with the modelling of the different situations the system is likely to encounter.

The work presented in this paper targets the requirements elicitation, analy-
sis, and specification processes. We make use of the notion of problem frames [4],
which appears to be a promising method both in helping to elicit requirements

M. Beigl et al. (Eds.): CONTEXT 2011, LNAI 6967, pp. 145–158, 2011.
c© Springer-Verlag Berlin Heidelberg 2011



146 A. Kofod-Petersen and J. Cassens

and in later transformation of design documents into actual systems. We have
previously suggested additional problem frames that target explanatory capabil-
ities explicitly [5], and we will here demonstrate how problem frames can be put
to use in revealing limitations of an existing ambient intelligent systems design
and can help to take needs into account arising from explanatory capabilities
when (re-) designing such a system.

The rest of the paper is organised as follows: Section 2 gives an overview of
related work; Section 3 give a short introduction to problem frames; Section 4
details the use of problem frames specific to ambient intelligent systems; Section 5
briefly describes the existing ambient intelligent information system for hospital
wards and how context awareness and context sensitivity is applied; Section 6
describes how the requirements for a redesign of the existing application can
be analysed and specified by applying problem frames. The papers ends with a
conclusion and outlook on future work.

2 Related Work

The use of patterns [6] is common for different software engineering approaches.
Patterns can be used in different software development phases and they can have
different foci. We can also identify knowledge engineering approaches making use
of patterns for the development of intelligent systems. This includes efforts to
provide reusable architectures by describing the abilities of (a library of) generic
problem solving methods. An example for a component model is the Unified
Problem-Solving Method Development Language UPML, cf. [7].

There are several methods and languages that use patterns and focus explic-
itly on the knowledge aspects of system design. For example, the goal of the IN-
RECA [8] methodology is to support the development of (industrial) case-based
reasoning (CBR) applications. Software process models from existing CBR ap-
plications are stored in an experience base that is structured at three levels. The
common generic level is a collection of very generic processes, products, and
methods for CBR applications. At the cookbook level, we find software models
for particular classes of applications (so called recipes). At the specific project
level, experiences from particular projects are stored. We can identify the recipes
at the cookbook level as patterns.

Another well-known approach is the CommonKADS methodology [9]. It is
based on two different views on the development process of knowledge based
systems: the result perspective encompasses a set of models of different aspects
of the knowledge based system and its environment, and the project manage-
ment perspective starts from a spiral life-cycle model that can be adapted to
the particular project. The CommonKADS template knowledge model provides
a way of (partially) reusing knowledge models in new applications and can be
understood as patterns in a software engineering sense.

When we look towards the software engineering world, we can see that pat-
terns are used in different phases of the design process.

On the software architecture level, we find architecture patterns [10]. At this
level, we encounter concepts like ‘Blackboards’, ‘Model-View-Controller’, or



Modelling with Problem Frames 147

‘Pipes and Filters’. For finer grained software development close to the actual
implementation, one can make use of design patterns that look inside towards
the computer and its software [11]. Design patterns deal with concepts like ‘Fac-
tories’, ‘Facade’, and ‘Decorater’.

Early on in the requirements engineering process, Jackson’s problem frames [4]
are at the core of a method to classify software development problems. Problem
frames look out into the world and attempt to describe the problem and its
solution in the real world. Problem frames introduce concepts like ‘Information
Display’ and ‘Commanded Behaviour’. Jackson’s set of basic problem frames can
be extended to be better able to model domain specific aspects. For example,
Hatebur et al. [12] introduce new problem frames for security problems.

Phalp and Cox demonstrate that people are capable of selecting the right
problem frames [13]. This study suggests that problem frames are indeed a suit-
able method for correctly assigning formal models to a given problem description
and therefore a helpful tool in the requirements engineering process.

Hall and Rapanotti [14] have introduced extensions to the basic problem
frames that will better facilitate socio-technical systems. They introduce a ‘user
interaction frame’, and employ the model-view-controller perspective to ease
decomposition. We will build on this results in our own work on ambient intelli-
gent systems as a special class of socio-technical systems where user interaction
is not only achieved via explicit communication, but also through the behaviour
of both system and user.

3 Problem Frames

The main purpose of any problem frame [4] is to propose a machine that im-
proves the combined performance of itself and its environment by describing the
machine’s behaviour in a specification. Jackson originally described five differ-
ent basic frames. In general, a problem frame assumes a user driven perspective.
Most basic frames assume that the user is in control and dictates the behaviour
of the machine. Since intelligent systems (ideally) take a much more pro-active
approach and mixed initiative issues become relevant, new problem frames ad-
dressing these topics have to be developed. For the course of this paper, we will
focus on frames targeting explanatory aspects and will not discuss other types.

Problem frames can be described by problem frame diagrams. These diagrams
consist basically of dashed ovals, representing the requirements, plain rectangles,
denoting application domains, and a rectangle with a double vertical stripe,
standing for the machine (or software machine) domain to be developed. These
entities become the nodes of the frame diagram. They are connected by edges,
representing shared phenomena and denoting an interface. Dashed edges refer
to requirement references. Dashed arrows designate constraining requirement
references.

The domains are of different types, indicated by a letter in the lower right
corner. A ‘C’ stands for a causal domain whose properties include predictable
causal relationships among its phenomena. A ‘B’ denotes a biddable domain



148 A. Kofod-Petersen and J. Cassens

that lacks positive predictable internal behaviour. Biddable domains are usually
associated with user actions. An ‘X’ marks a lexical domain. Such a domain is a
physical representation of data and combines causal and symbolic phenomena.

4 Problem Frames and Ambient Intelligence

Following the definition of ambient intelligence [1], in general an ambient intel-
ligent system can be fitted into a Required Behaviour problem frame. Figure 1
illustrates this. AmI!C1 is the phenomena shared between the machine and the
environment, and controlled by the systems; that is the actuators. The E!C2 is
the phenomena shared between the machine and the environment, which is not
controlled by the machine; that is the sensors. Finally, C3 refers to the behaviour
that the machine is to exhibit.

Environment

C

AmI!C1
E!C2

Required
behaviour

C3
Ambient 

Intelligent 
Machine

Fig. 1. Ambient Intelligent Systems as a Controlled Behaviour Frame

Even though required behaviour frames are generally and by definition suit-
able for ambient intelligent systems, some special cases exist where explicit user
interaction is required other than through behavioural interfaces. It has been
argued that any adaptive system in general, and an ambient intelligent system
in particular, must be able to change its interaction style and exhibit the ability
to explain its behaviour [15]. This ability requires that the system can communi-
cate with the user through suitable interfaces, such as displays. In addition, the
user should have the option to explicitly request an explanation of the system’s
behaviour. Thus, a suitable problem frame is required to capture this.

User

B

AmI!C4

U!C5

Interactive

behaviour

C4,C5Interaction

machine

Fig. 2. User Interaction Frame (adopted from [14])

Following the argumentation of Hall and Rapanotti [14], we employ the User
Interaction Frame, depicted in Figure 2. AmI!C4 is the symbolic phenomena
shared between the machine and the user, where the machine can display infor-
mation to the user. U!C5 is the causal shared phenomena between the machine



Modelling with Problem Frames 149

User

B

AmI!C4
U!C5

Required and
Interactive
behaviourC4,C5

Interactive 
ambient

intelligent
machine

Environment

CAmI!C1

E!C2

C3

Fig. 3. Interactive Ambient Intelligence Frame

and the user, where the user initiates commands. Finally, C4,C5 are the rules of
conduct between the machine and the user.

Again following Hall and Rapanotti, we can combine these two frames into
an Interactive Ambient Intelligence Frame, as depicted in Figure 3. Here, inter-
active, explanatory capabilities are combined with the environment controlling
aspects of ambient intelligent systems. This aggregation differs significantly from
the original required behaviour frame [4]. The behaviour of the ambient intelli-
gent system is not mainly guided by explicit input from the user, but is a result
of the pro-activeness of the system and implicit interaction (for example the
location of the user). But it opens up for direct interaction, for example by the
user requesting an explanation. This will, however, not command the whole be-
haviour of the system directly, but only a small part of it. In that sense it further
on differs from the user commanded frame in [14] as the system can take actions
that are not triggered through commands explicitly issued by the user.

4.1 Explanation Problem Frames

Taking a closer look at Figure 3, we will see that the upper part captures the
behaviour of the ambient intelligent system, whereas the lower part represents
the interactive properties of the system. We will use this part of the general frame
to model the explanation abilities. To this end, however, we have to decompose
the lower part in order to model different types of explanation.

The list of explanation requirements can be described as a list of the expla-
nation goals that a system must be able to satisfy. Sørmo et al. identify five
different explanations goals that a system might have to handle [2]. This work
has been further expanded in [15], where the explanation goals have been com-
bined with the ambient intelligence paradigm. Our own work focuses on the four
goals that are not related to applications as an educational tool: The goal of
transparency is concerned with the system’s ability to explain how an answer
was reached. Justification deals with the ability to explain why the answer is
good. When dealing with the importance of a question asked, relevance is the
goal that must be satisfied. Finally, conceptualisation is the goal that handles
the meaning of concepts.

Following these four goals of explanations, we have previously constructed four
problem frames that each captures one kind of explanation [5]. The transparency



150 A. Kofod-Petersen and J. Cassens

Y4

C

Transparency
Explanation

TM!Y2

Reasoning
Trace

XTM!Y1

How was the
answer reached?

Y3

Transparency
Machine

Fig. 4. Transparency Explanation

goal is concerned with how the system finds a solution to a given problem. This
allows the user to inspect the reasoning process to identify the cause of any ab-
normal behaviour. The transparency explanation frame is depicted in Figure 4.
Here the Reasoning Trace is a lexical domain, which allows the Transparency
Machine to read the reasoning trace trough the shared phenomena TM!Y1. The
Transparency Explanation is the causal domain, which the machine can con-
trol through the shared phenomena TM!Y2. In short, the Transparency Machine
has to inspect the reasoning trace and present the relevant information to its
user.

Y6

C

Justification
Explanation

JM!Y3

Reasoning
Trace

X

JM!Y1

Why is the 
answer good?

Y4

Justification
machine

System
Knowledge

X

Y5JM!Y2

Fig. 5. Justification Explanation

The justification goal is closely related to the transparency goal. Justifica-
tion can be seen as a simplification of the reasoning process that the system
actually goes through. The main purpose of this explanation goal is to con-
vince the user that the reasoning is sound. In general, whereas transparency
explanations are for experts that are interested in the exact details of the rea-
soning, justification explanations are for novice users that are interested in being



Modelling with Problem Frames 151

persuaded of the system’s reasoning. Figure 5 displays the problem frame of a
justification explanation goal. This frame resembles the one for transparency
explanations, with the addition of the lexical domain System Knowledge. This
domain facilitates the expansion of a transparency explanation by allowing the
Justification Machine to inspect the system’s knowledge through the shared
phenomena JM!Y2.

5 Hospital Ward System

The application in question is an ambient intelligent information system for sup-
porting medical personnel at a hospital ward. The persons involved deal with
different activities, like ward rounds, pre-ward round meetings, and different
forms of examination. The staff has to access a large variety of different infor-
mation systems. The main goal is to have a system that makes the information
sources needed in different situations (such as specific journals, test results, and
treatment plans) available pro-actively. To this end, the system must first iden-
tify the activity the system’s user is involved in, identify his role, and then query
the information sources that are likely to be accessed.

Following the definition of ambient intelligence in [1], the system perceives
its environment, becomes aware of ongoing situations, and is sensitive to the
idiosyncrasies of the particular situations.

Perception

Awareness

Sensitivity

Environment

Fig. 6. System Architecture

The existing system is build around a multi-agent platform. Perception is han-
dled by a Context Middleware [16], the situation awareness is build around the
case-based reasoning system CREEK [17], and the acquisition of relevant infor-
mation (sensitivity) is facilitated by dynamic task decomposition [18]. Situations
were identified and the knowledge model populated through an ethnographical
study conducted at the cardiology ward [19]. The whole system was implemented
using the Jade [20] agent framework.

In our system, we use explanations in two distinct ways: first, enhancing
and promoting the reasoning process; called the system centric view. Second,
delivering some knowledge about the reasoning process, its results, or implication
to the user; called the user centric view. Table 1 shows how these two different



152 A. Kofod-Petersen and J. Cassens

Table 1. Context and Explanations

Context Awareness Context Sensitivity

System Centric Explanations to recognise the
situation

Identify the desired system be-
haviour

User Centric Elucidate why a situation was
identified

Explicate why a certain be-
haviour was chosen

usages of explanations relate to the awareness and sensitivity aspects of our
system. For the purpose of this paper we will disregard the perception layer of
the architecture as the perception layer demonstrates no reasoning capabilities,
and only structures perceived data syntactically.

In the setting of our general frame for interactive ambient intelligent systems
depicted in Figure 3, the system centric explanations relate the upper part,
whereas the user centric explanations relate to the lower part. The explanation
problem frames for user goals can be put to use in the lower part or user centric
view, but modified versions reflecting the system’s intentions are important for
the upper part or system centric view as well. For the remainder of this paper,
we describe how to make use of explanation problem frames for the explication
aspect, describing the user centric and context sensitive use of explanations.

5.1 Example

To clarify the functionality of this system, we will present a small example. It
sketches an execution taken from a simulated system run, using the real data
set gathered at the cardiology ward. In this case we are dealing with a pre-ward
round situation. A pre-ward round is a particular type of meeting that occurs
every morning. Usually, the physician in charge and the nurse in charge are
present. They discuss each of their patients, including their current condition,
any changes, and the treatment plan.

The Context Middleware monitors the different sensors in the environment,
and discovers a change, which provokes a change in the current context [16]. This
change in the context is transferred to the CBR sub-system, which retrieves the
best matching case based on the sensor values.

In this example, the CREEK component retrieves a case describing another
pre-ward round. Having identified the ongoing situation as a pre-ward round,
the CBR engine now extracts the goal of this type of situation. In this case, the
goal is to gather the relevant information. This goal is sent to the sensitivity
part to be solved [21].

The Sensitivity part of this system receives the goal and matches it to a
general decomposition tree that contains the tasks required to satisfy the goal.
In this example the task tree that matches a pre-ward round goal is as follows:

1. Acquire name of patient.
2. Acquire changes in patient’s conditions since yesterday.



Modelling with Problem Frames 153

3. Acquire any new results from tests.
4. Examine, and possible change, medication scheme.
5. Note changes in treatment.

Each solvable task is matched to an action performed by an available, willing
and able agent. The system currently offers 19 different agents, each representing
one information system at the hospital ward. Together these 19 agents offers 21
different information services.

The initial problem of finding the patients name can be facilitated by the
Patient List Agent. The ‘Acquire Information’ task is decomposed into one task
that acquires changes which are supplied by the Electronic Patient Record, the
WiseW application and the Patient Chart, and another task that acquires results
which can be delivered by the Patient Chart and the WiseW application.

This plan is now executed and the information acquired through the different
agents is returned to the user; thus ending an execution cycle of this system.
Figure 7 depicts the decomposition tree constructed for this example, including
the matching agents and their services.

Task: Pre-ward round
Input: context
Output: information

Task: Acquire Information
Input: name
Output: information

Task: Find name
Input: location of patient
Output: name

Patient List Agent
Input: location of patient
Output: name

Task: Acquire changes
Input: name
Output: changes

Electronic Patient Record
Input: name
Output: ALL, PROGTREAT

WiseW
Input: name
Output: FINDEX

Patient Chart
Input: name
Output: Medication

Task: Acquire ALL
Input: name
Output: ALL

Task: Acquire PROGTREAT
Input: name
Output: PROGTREAT

Task: Acquire Medication
Input: name
Output: Medication

Task: Acquire FINDEX
Input: name
Output: FINDEX

Task: Acquire results
Input: name
Output: results

Patient Chart
Input: name
Output: BLOOD

WiseW
Input: name
Output: FINDEX

Task: Acquire BLOOD
Input: name
Output: BLOOD

Task: Acquire FINDEX
Input: name
Output: FINDEX

Fig. 7. Pre-ward Round Plan

6 Redesigning the Existing Application

As stated in the previous section, we have performed an ethnographical study
to elicit the requirements for an ambient intelligent hospital ward information
system. The results of the study were used to model the different situations the
system could encounter. Further on, the analysis of artifacts used during the
different situations was incorporated into the task decomposer so that suitable
information source could be queried in different contexts.

In the first incarnation, explanatory capabilities were not explicitly included
in the design specifications. However, the socio-technical theory used in the study
design and application allows us to elicit the possible explanation goals users of
the system might have [15]. Therefore, a re-design on the grounds of the data
already gathered is feasible.



154 A. Kofod-Petersen and J. Cassens

6.1 Example

Revisiting the example of the previous section, we have the instance where the
system correctly classifies an ongoing situation as a pre-ward round. If we focus
on the context sensitive part of the system, its main purpose is to examine the
artifacts, represented by agents, in the environment and find those that can
supply relevant information. So far this application only supplies information
without any explanation of its behaviour.

Information
Machine

Display pre-ward
round information

System
Knowledge

X

Name
Agent

X

Change
Agent

X

Result
Agent

X

Information 
Display

C

IM
!Y5

IM
!Y

1

IM
!Y2

IM!Y3

IM!Y4

Y6

Y7

Y8

Y10

Y9

Fig. 8. Ambient Information Display

In order to demonstrate how the explanation goal problem frames can be used
to model explanatory needs in the problem domain, we will start with a simpli-
fied problem diagram for our application (Figure 8). This is essentially modelling
the behaviour of the system without direct user interaction and reflecting the ca-
pabilities the existing system was designed to have. This part is a decomposition
of the upper part of the Interactive Ambient Intelligence Frame from Figure 3.
We have modified Jackson’s information display problem frame and used it as a
starting point for the diagram. You can see three domains representing (groups
of) the agents mentioned above.

Additionally, you see the Display domain which stands for the information
display of the system and System Knowledge for deciding which data sources to
use. For the sake of clarity and simplicity, we have abstracted away the sensor
parts of as well as the context aware parts of our example application and focus
solely on the information gathering and display parts. Let us now assume that
the results displayed by the system are of such a nature that the physician
using the system requires an explanation. Let us for the sake of simplicity of the
example further focus on a subset of the identified explanation goals.



Modelling with Problem Frames 155

Transparency
Explanation

C

TM!Y2

Explanation
Interaction

Y5

Transparency
Machine

Reasoning
Trace

XTM!Y
1

Y3,Y4

Justification
Machine

Justification
Explanation

C

System
Knowledge

X
JM!Y8

JM
!Y6

JM!Y7

Y9

Y10

Fig. 9. Transparency and Justification Explanation

We want to integrate the explanation sub problems described by the two
problem frame diagrams for the Transparency and the Justification goal to model
the explanatory capabilities of the system. This combination is covered in the
frame depicted in Figure 9. This model is a decomposition of the lower part of
the Interactive Ambient Intelligence Frame from Figure 3. In the work presented
here, we decide upon which of the two explanations to present as a function of
the user’s level of competence. That is, expert users are subject to transparency
explanations and novice users to justification explanations [22].

By integrating Figure 8 modelling the ambient intelligence capabilities without
explicit user interaction and Figure 9 capturing direct user involvement exempli-
fied for explanations, we have a model (albeit simplified) of our explanation-aware
ambient intelligent system. We can now re-visit the example problem described
above. The expert user physician wishes to know how the combination of infor-
mation displayed was reached. According to the transparency explanation prob-
lem frame, this can be achieved by displaying the reasoning trace. This can for
example be done by showing that the top task ‘Pre-ward round’ was selected as a
function of the classification, by displaying how the decomposition tree looks like,
and by supplying information about the agents selected.

For the justification explanation, the novice user physician would like to know
why this combination of information is any good. This can be achieved by re-
lating the reasoning trace to the domain model of the system. For example,
according to the domain model, the ‘Acquire Medication’ task could be satis-
fied not only by the Patient Chart but also by the Electronic Patient Record.
However, as the Electronic Patient Record agent was busy serving other requests
only the Patient Chart could respond to this request.

6.2 Analysing the Existing Application

The results of our ethnographical study are pointing towards the necessity to
support four of the five different user goals introduced by Sørmo et al. [2],



156 A. Kofod-Petersen and J. Cassens

namely transparency, justification, relevance, and conceptualisation. This can
be expressed in design specification documents which explicitly include the ex-
planatory needs. When we look at the existing application, we can see that it
does support the transparency, conceptualisation, and justification goals, where
the latter is even only supported partially.

The fact that the system lacks certain explanatory capabilities is hardly sur-
prising since they were not the main focus of the earlier implementation. How-
ever, the use of problem frames in general and explanation problem frames in
particular helps us in identifying the deficiencies of the existing design, under-
standing and communicating explanatory needs, as well as exploring possible
solutions to overcome these deficiencies.

Since we have started with data from an existing workplace analysis, we have
not tested the hypothesis that (explanation) problem frames can be put to use in
communicating with prospective users during the requirements elicitation phase.
But we assume problems frames can enhance the cooperation between the re-
quirements engineers and these users, as indicated by Phalp and Cox [13].

In the requirements analysis, introducing explanation frames facilitates the
explication and formalisation of the findings of our ethnographical study and
thereby deepens our understanding of the problem domain.

The use of problem frames as a method during requirement specification aids
us in checking the completeness of the specification and helps us to incorporate
explanatory needs which could otherwise be overlooked. This should also lead to
a design which encompasses more features. If we had done the original system
specification with the help of (explanation) problem frames, the missing support
for the relevance goal would have been uncovered.

An explanation aware requirements specification is also fruitful in the transi-
tion from design to implementation. Earlier work by Roth-Berghofer and others
has coupled explanation goals with the knowledge containers of case-based rea-
soning systems [23]. Having an explicit representation of explanation goals helps
in identifying requirements for the knowledge containers, easing the way from a
specification document to the structure and content of the knowledge containers.

7 Conclusion and Future Work

We have suggested the use of problem frames for analysing and specifying re-
quirements for explanation-aware ambient intelligent systems. By introducing
explanation patterns we have enhanced the toolbox for designing ambient intel-
ligent systems.

We have shown how the use of explanation specific problem frames can help
in recognising and explicating design requirements resulting from the necessity
of intelligent systems to be able to explain their own reasoning and behaviour.

There are several issues that we have not addressed in this paper and which
are left for further work. First and foremost, we have to explore further the rela-
tion between the design documents and the actual implementation. Our results
show that problem frames help us to identify which explanatory knowledge and



Modelling with Problem Frames 157

mechanism should be provided, but the methods for the next step in identifying
the missing “knowledge containers” and suggesting remedies have to be extended
over the existing work on the relation between explanation goals, explanation
kinds, and knowledge containers.

References

1. Ducatel, K., Bogdanowicz, M., Scapolo, F., Leijten, J., Burgelman, J.C.: ISTAG
scenarios for ambient intelligence in 2010. Technical report, IST Advisory Group
(2001)

2. Sørmo, F., Cassens, J., Aamodt, A.: Explanation in case-based reasoning – per-
spectives and goals. Artificial Intelligence Review 24, 109–143 (2005)

3. Leake, D.: Goal-based explanation evaluation. In: Goal-Driven Learning, pp. 251–
285. MIT Press, Cambridge (1995)

4. Jackson, M.: Problem Frames – Analysing and Structuring Software Development
Problems. Addison-Wesley, Boston (2001)

5. Cassens, J., Kofod-Petersen, A.: Designing explanation aware systems: The quest
for explanation patterns. In: Roth-Berghofer, T.R., Schulz, S., Leake, D. (eds.)
Explanation-Aware Computing – Papers from the 2007 AAAI Workshop. Number
WS-07-06 in Technical Report, pp. 20–27. AAAI Press, Vancouver (2007)

6. Alexander, C., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., Angel,
S.: A Pattern Language. Oxford University Press, New York (1977)

7. Fensel, D., Benjamins, R., Decker, S., Gaspari, M., Groenboom, R., Grosso, W.,
Musen, M., Motta, E., Plaza, E., Schreiber, G., Studer, R., Wielinga, B.: The
component model of upml in a nutshell. In: WWW Proceedings WICSA1, 1st
Working IFIP Conference on Software Architectures, San Antonio, Texas (1999)

8. Bergmann, R., Althoff, K.D., Breen, S., Göker, M., Manago, M., Traphöner, R.,
Wess, S.: Developing Industrial Case-Based Reasoning Applications, 2nd edn.
LNCS, vol. 1612. Springer, Berlin (2003)

9. Schreiber, G., Akkermans, H., Anjewierden, A., de Hoog, R., Shadbolt, N., de
Velde, W.V., Wielinga, B.: Knowledge Engineering and Management – The Com-
mon KADS Methodology. MIT Press, Cambridge (2000)

10. Avgeriou, P., Zdun, U.: Architectural patterns revisited – a pattern language. In:
Proceedings of the tenth European Conference on Pattern Languages of Programs
(EuroPlop 2005), Irsee, pp. 1–39 (2005)

11. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Boston (1995)

12. Hatebur, D., Heisel, M.: Problem frames and architectures for security problems.
In: Winther, R., Gran, B.A., Dahll, G. (eds.) SAFECOMP 2005. LNCS, vol. 3688,
pp. 390–404. Springer, Heidelberg (2005)

13. Phalp, K., Cox, K.: Picking the right problem fram – an empirical study. Empirical
Software Engineering 5, 215–228 (2000)

14. Hall, J., Rapanotti, L.: Problem frames for sociotechnical systems. In: Mate, J.L.,
Silva, A. (eds.) Requirements Engineering for Sociotechnical Systems, pp. 318–339.
Idea Group Publishing, USA (2005)

15. Kofod-Petersen, A., Cassens, J.: Explanations and Context in Ambient
Intelligent Systems. In: Kokinov, B., Richardson, D.C., Roth-Berghofer, T.R.,
Vieu, L. (eds.) CONTEXT 2007. LNCS (LNAI), vol. 4635, pp. 303–316. Springer,
Heidelberg (2007)



158 A. Kofod-Petersen and J. Cassens

16. Kofod-Petersen, A., Mikalsen, M.: Context: Representation and reasoning – repre-
senting and reasoning about context in a mobile environment. Revue d’Intelligence
Artificielle 19, 479–498 (2005)

17. Aamodt, A.: Knowledge-intensive case-based reasoning in CREEK. In: Funk, P.,
González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 1–15.
Springer, Heidelberg (2004)

18. Gundersen, O.E., Kofod-Petersen, A.: Multiagent based problem-solving in a mo-
bile environment. In: Coward, E. (ed.) Norsk Informatikkonferance 2005, NIK 2005,
pp. 7–18. Institutt for Informatikk Universitetet i Bergen (2005)

19. Cassens, J., Kofod-Petersen, A.: Using activity theory to model context awareness:
a qualitative case study. In: Sutcliffe, G.C.J., Goebel, R.G. (eds.) Proceedings of
the 19th International Florida Artificial Intelligence Research Society Conference,
pp. 619–624. AAAI Press, Melbourne (2006)

20. Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.: Jade – a white paper. TILAB
EXP “in search of innovation” 3, 6–19 (2003)

21. Kofod-Petersen, A., Aamodt, A.: Contextualised Ambient Intelligence Through
Case-Based Reasoning. In: Roth-Berghofer, T.R., Göker, M.H., Güvenir, H.A.
(eds.) ECCBR 2006. LNCS (LNAI), vol. 4106, pp. 211–225. Springer, Heidelberg
(2006)

22. Mao, J.Y., Benbasat, I.: The use of explanations in knowledge-based systems: Cog-
nitive perspectives and a process-tracing analysis. Journal of Managment Informa-
tion Systems 17, 153–179 (2000)

23. Roth-Berghofer, T.R., Cassens, J.: Mapping Goals and Kinds of Explanations to
the Knowledge Containers of Case-Based Reasoning Systems. In: Muñoz-Ávila,
H., Ricci, F. (eds.) ICCBR 2005. LNCS (LNAI), vol. 3620, pp. 451–464. Springer,
Heidelberg (2005)


	Modelling with Problem Frames: Explanations and Context in Ambient Intelligent Systems
	Introduction
	Related Work
	Problem Frames
	Problem Frames and Ambient Intelligence
	Explanation Problem Frames

	Hospital Ward System
	Example

	Redesigning the Existing Application
	Example
	Analysing the Existing Application

	Conclusion and Future Work
	References




