
In: Proceedings to ICCE 2003, Hong Kong, ISBN: 962-949-144-3, pp. 556-563 
 

XMendeL –  
A web-based semantic Web Tool for e-Learning Production Processes 

  
 

Ronald Hartwig, Michael Herczeg, Lia Hadley 
Institute for Multimedia and Interactive Systems – University of Luebeck 

Hartwig|Hadley|Herczeg@imis.uni-luebeck.de 
 
 

Abstract: The production process of multimedia learning material includes many 
participants, tasks, and tools. The system described in this paper combines all data from 
the development and production processes into one semantic web based and XML-coded 
system. The contents are kept using object-oriented development concepts, such as 
“inheritance”, to cope with large volume and complex data. 

 
 
 

Introduction 
 
This paper results from work experiences over four years of learning module production. The 

authors participate in several projects dealing with virtual universities: in particular, the German flagship 
project “Virtual University of Applied Science” (in German “VFH – Virtuelle Fachhochschule”), the 
project “medin” (Multimedia-Based Distance Education in Medical Computer Science) and the project 
“WissPro” (“Wissensprojekt ‘Informatiksysteme im Kontext’”). All projects are sponsored by the German 
Federal Ministry of Education and Research (BMBF). The goal of these projects is to build interactive and 
multimedia learning modules for (distance) learning at universities using the Internet. A system was created 
to support the development and production processes, which follows the principles of a comprehensible 
quality assurance system. This enables all of the participants to make their decisions and contributions 
based on a shared process repository.  

 
 

Concepts 
 
Today’s authoring systems (e.g. HTML-editors, XML-tools, or other, so called “authorware”) 

focus mainly on one part of the production process. They are intended for implementing a learning or a 
teaching module after the concept and course material is complete. The majority of process-relevant 
information is documented and communicated using other tools: text editors or word processors. Typical 
process information includes: user descriptions, didactical concepts, use scenarios, and quality 
requirements. 

Theoretically, XML has the potential to combine all process-relevant data into a unified database. 
Ideally, all information (i.e. context information and content data) is meshed in a semantic web. The 
meshing process though should remain a creative process for human experts in combination with a content 
management system. The context information (e.g. didactical, technical, content, usability or organizational 
related information) must be available during this creative process in order to make conceptual decisions. 

The classical gap which often exists between analysis data and actual system design is well known 
in the world of software engineering. Integrated development environments are intended to overcome the 
discrepancies which arise because of the gap in the information flow. The first step is to offer a common 
database for all participants and process phases. 
 

 
Process Model  

 



In: Proceedings to ICCE 2003, Hong Kong, ISBN: 962-949-144-3, pp. 556-563 
 

The underlying process model for our system is adapted from the iterative ISO 13407 (1999) 
process approach to fit into the CSCL production context. It is combined with a quality assurance model 
(see Dzida and Freitag 2001) for usability which is expanded to focus on didactical and technical fields of 
interest. The following approach is strongly influenced by the scenario-based design approaches used in the 
field of software engineering (see Holtzblatt & Beyer 1996, Kritzenberger, Hartwig and Herczeg 2001,  and 
Rosson & Carroll (2002)). The central goal of the process model is to implement a consistent decision 
chain (Hartwig, Triebe and Herczeg 2002). This chain begins with context information (e.g. use scenarios) 
and ends with product attributes. This makes it possible for the development team (e.g. content authors, 
didactical experts, usability specialists, producers, and quality assurance managers) or external evaluation 
persons to track any product attribute back to its original concept and contextual foundations. It also 
encourages all participants, each with different expertise, to understand why something is required or vital 
to the development or production processes.  

If a specific didactical approach is chosen (e.g. an “explorative model”) this leads to a concrete 
design strategy on how to structure the information blocks and how to connect them. This may be specified 
as a requirement (i.e. “users are able to navigate directly from one block to any other block”), which can be 
later checked in a quality assurance test. Following the ideas of usability, the next step is to derive a 
minimum level of effectiveness, efficiency and satisfaction. In this example a minimal requirement would 
be that the software solution is less complicated and time consuming than the paper-based method. The 
next step is to define testable criteria to assure that the technical implementation does not contradict the 
original concept. These criteria can then be used to setup a production guideline and to do quality assurance 
management. 

The goal of a holistic system is to utilize all the process data to communicate between different 
participants in the development and production processes and to document the quality management relevant 
decisions in a central database.  

 
 

Combining Content and Context Objects in a Unified Database 
 
The different types of information which evolve during the development process can be seen as 

information “objects” or knowledge “frames” described in (Hartwig, Kritzenberger and Herczeg 2000) and 
(Kritzenberger & Herczeg 2001). These objects have attributes similar to those from the object-oriented 
software development world.  For example, a user description has user attributes like age, disposition, goals 
or skills. A development decision (e.g. didactical) has a reasoning and links to pertinent information; e.g. an 
attribute of the user description or to resulting requirements for the design. The interconnectivity logic of 
all these objects creates a semantic web. 

The objects build the data base and the connecting links carry implicit or explicit relational 
information (e.g. “this observation leads to this decision” or “this product attribute contradicts the criteria 
of …”). If an object is a specialization of a more general object this relation is called a “parent -child” 
relation and the parent may propagate its information to its children (“inheritance”).  

The goal of our system is to support building such objects into a semantic web (Kritzenberger & 
Herczeg 2001). In practice, the structure and the contents of this semantic web are not always well defined 
at the beginning of the process and it evolves during the entire lifecycle of the learning module. Attributes 
are added as soon as analysis (e.g. an evaluation review) discloses them or the production process needs 
them. New types of connections appear when the different participants review and rereason their 
previouslymade decisions. Therefore a supporting software system has to allow the adaptation of the 
structure and the contents of the semantic web by its users throughout the development and production 
processes.  

Modeling the context information in one system and modeling the content data in another deepens 
the gap between analysis and design. The specialized supporting experts mainly use different forms of text 
formatting systems in order to keep their context information; while producers use content objects like 
HTML-pages or Macromedia Flash™ elements. Context information and content data have to be unified 
and connected. There already exist standards, such as the IEEE Learning Objects Metadata (2001), to 
model content data. The system must be able to take such external standards in consideration. Figure 1 
shows the main structure of the semantic web structure. In practice, the first iteration of such a process is 
based only on rough assumptions and common knowledge instead of detailed analysis data. The underlying 



In: Proceedings to ICCE 2003, Hong Kong, ISBN: 962-949-144-3, pp. 556-563 
 

process model tries to overcome this potential drawback. The evaluation phase is taken as a second analysis 
phase as well. Valuable use data is gathered during on-site usability testing as described in (Dzida & 
Freitag 2001) and fed back into the next iteration. An integrative tool supports this dynamic process; 
making it possible to trace the effect of each change in the context of use, down to the product design 
decisions. 

 
 Analysis 

Context of use, 
goals, scenario 

Concepts 
didactics, 
interface 

 

Product 
content, 

multimedia and 
interactive 

module 

Evaluation 
failures, 

problems 

Requirements 
criteria, 

guidelines 

(potential) 
Deficiencies 

illustrate 

reason 

reason 

reason 

reason 

reason 

reason 

determine 

determine determine 

form 

has 

determine 

validate, extend, correct 

identifies 
illustrate 

justify justify 
question 

affect 

 
Figure 1: Object model with its interconnectivity 

 
The process previ ously described is based on a falsification approach. It is assumed in this 

approach that as long as no specific fault has been determined, the product quality is acceptable. A 
falsification approach avoids wasting time and money on worst-case scenarios. In our system the majority 
of process context information is connected to potential deficiencies as a consequence of the falsification 
approach.  Potential deficiencies are identified during evaluation processes and reviewed using their context 
information. The original concept decisions and design rationale related to these potential deficiencies must 
first be evaluated before they can be called deficiencies.  
 
Backtracking and Tracing  

 
One of the main goals of our system is to support the backtracking of decision chains. This allows 

critical review of the decisions and their compliance to system requirements. All links within this semantic 
web are automatically bidirectional in order to support backtracking. If, for example, a product attribute 
conflicts with a specific criteria then this product attribute illustrates the contra-meaning of the criteria. 
Additionally, if, for example, a decision is based on a user description, it is vital to be able to comprehend 
the effects of a change in this user description.  
 
Using an Inheritance Mechanism 

 
Generally, the number of objects grows rapidly if such an object-oriented model is applied. The 

implicit inheritance of a hierarchical structure is supported explicitly by the system to cope with the rising 
complexity of objects and their interconnection. If information is defined on a higher abstraction level 
(“parent” object), then it must be made available to all dependents (“children”). If an exercise, for example, 
is available for a whole chapter (parent), and this chapter consists of subchapters and single pages 
(children), then the link to this exercise is made available even on the single page level. Typical XML-tools 
support this implicitly as they allow building tree structures.  The disadvantage of implicit inheritance is 
that the user has to manually find the information defined on higher abstractions levels.  This leads to a 



In: Proceedings to ICCE 2003, Hong Kong, ISBN: 962-949-144-3, pp. 556-563 
 

permanent source of error if the semantic web has a large number of levels which are widely spread. Users 
may lose track of what attribute is valid on a lower abstraction level. 

In a complex and long-termed production process it can not be assumed that the participants have 
a thorough understanding of information structures, implicit inheritance, and abstraction levels. Our 
principle use case is a long-term production process (3-5 years of production) with approx. 120 
participants. Therefore our system supports an adaptable explicit inheritance mechanism. “Explicitly” 
means that the inherited data is not only linked to the currently viewed object, but automatically augments 
the object’s attributes. This makes the object self-contained and the users do not have to understand or 
follow the hierarchy if they do not want to. There are two forms of inheritance available in our system: one 
which augments information from parent to child, and the other which replaces information. Replacement 
is needed for internal attributes like access rights. Most of the information though is an accumulation of all 
preceding attribute information from higher levels (parents): e.g. a user description may be specialized for 
subgroups where the general attribute for all users is true, as well as the more specific information for a 
subgroup. Inheritance can also be made inactive for certain parts of the hierarchy and certain attributes. 
 
Support for all Participants 

 
The initial impulse to develop our integrative system was to overcome problems with the low 

efficiency of a document-based quality management and decision processes in the German flagship project 
“Virtual University of Applied Science”. If the producers had questions about how to implement certain 
product attributes, the support department (didactics and ergonomics) had to write individual reports 
reasoning their decisions. If, years later, another team needed assistance with a similar problem, it was 
often difficult to retrieve the older decision. When the first evaluation results from the usability testing were 
available, changes in the criteria and in many basic assumptions evolved. It was not obvious to determine if 
and how past decisions were affected by these changes. 

In the project “medin” the production process is based on Microsoft Word™ documents from the 
content authors, which were originally transformed into web-sites using HTML-Editors by the producers. 
The content authors know little about HTML-technology and therefore they are not able to implement their 
final changes to the learning modules without the assistance of the producers. Since the content authors and 
producers are geographically separated, communications of future content changes is often time-
consuming. It became evident that our system must enable all participants to easily contribute information 
with respect to their area of competence. Another system requirement was to make the decisions and their 
interconnectivity transparent.  

 
 

Implementation 
 
The system we developed is based on the assumptions and requirements described above. The 

main principle is to use the XML-meta language as the data modeling base for context information as well 
as content data: thus bridging the previously mentioned gap in information flow. Unlike pure XML-editors, 
our system combines XML-transformation (similar to a XSLT processor) with explicit inheritance. This 
system core is called “XMendeL”: a combination of “XML” and the name of the discoverer of inheritance 
“Mendel”. Figure 2 shows the main system components of XMendeL. It contains a standard SQL-database 
(mySQL) which stores the XML-tagged attribute data (context information as well as content data) and 
their interconnectivity. Binary data (e.g. pictures, video clips), word-processor-documents, interactive 
contents is stored in a central resource repository on the server file system. Each binary file is accessed and 
administrated through a respective object in the database. The database is connected to a JAVA-Servlet-
Server (Tomcat) via JDBC. The business logic is implemented as a relatively small set of java-servlets. 

This application core of XMendeL offers the central functionality of generating self-contained 
objects in context specific views. The application first reads a set of cascading templates (similar to CSS) 
which define the appearance and the inheritance strategy of the specific view. The template’s 
transformation and inheritance rules are attribute dependent and may vary from view to view. Then links 
between objects and their corresponding back-tracking information are added. In the third step, built-in or 
user-defined plug-ins are executed. One example of a context specific plug-in is one which automatically 



In: Proceedings to ICCE 2003, Hong Kong, ISBN: 962-949-144-3, pp. 556-563 
 

generates page numbering following a dedicated learning path. The final step is to transform XML into the 
target language (another XML-dialect, HTML, LaTeX, plain text, etc.). The actual procedure is more 
complex. The resulting output is then made available to all the participants using three different interfaces: 
a standard web browser, import/export, and web-services. 

 

Figure 2: Main tool structure 

 
Web-Browser Access 

 
The standard HTTP-service allows internet browsers to access and administrate the database using 

a comfortable web front end (see Fig. 3 and 4). The input interface uses special browser extensions to offer 
a WYSIWYG-feeling for textual formats. Java-scripting is used to implement other dynamic effects like a 
drag-and-drop interface for object hierarchies or graphical elements. Content authors are offered this simple 
WYSIWYG-view to read and edit their material. The conception and production staff receives an 
augmented version with context information (e.g. inherited meta-data and/or storyboards). Quality 
management staff is provided with yet another view; which clarifies how the decisions were made, and how 
these decisions are dependent on the analysis data. 

 
File Import/Export 

 
The system can generate a standalone version of an object hierarchy including all needed 

resources. This is a vital option for learning contents because this way the produced modules may be used 
in combination with common learning online environments (e.g. Blackboard™). Normally, the stand-alone 
version is a self-contained HTML-site. Another possibility is to save the data as a XML-conform structure 
that may be reused by other tools. A third alternative is to export online-contents as a LaTeX-file and then 
use the LaTeX-typesetting mechanisms to achieve a better printing layout. Theoretically, all SGML-
successors may be exported. A practical advantage of this offline file generation option is the user’s ability 
to re-use system data with other external tools. If external tools create well-defined and structured output 
files, they may be imported into the database using a similar mechanism as described above. Specific 
import filters are used in our projects to import lecturing presentations generated with HTML-Editors, as 
well as statistical evaluation data from Microsoft Excel™-sheets. The export/import function allows users, 
on the one hand, to export portions of the database into a file. They edit the file using external tools and 
then re-import it again into the database after-wards.  

 



In: Proceedings to ICCE 2003, Hong Kong, ISBN: 962-949-144-3, pp. 556-563 
 

 

Internet 
Browser 
 
Object type 
and parents 
 
inherited text 
 
specific text 
 
Link to other 
object  
 
formatted text 
 
integration of 
multimedia 
parts 
 
user definable 
attributes  
 
 
backtracking 
information 
- child objects 
- other  
 
Version data 

                                   object functions 
                object tree with Drag&Drop Support   
     global functions              

 
Figure 3: Web interface with standard objects  

 
Web-Services 

 
The third possible interface is the new web services interface using the SOAP-standard.  This 

enables remote access to the XMendeL functionality and database for external applications. A seamless 
combination of Microsoft Word™ and XMendeL is currently under development. This will allow the 
authors the ability to continue using their preferred text processor. They do not have to learn how to handle 
objects, structures and meta-data (e.g. XML-tagging). This integration using SOAP and the Microsoft-
.net™-initiative will help participants to easily start using the system; raising the acceptance and keeping 
the database consistent with the context information and content data. Other participants will continue to 
access the database using the web-based interface described above.  

 



In: Proceedings to ICCE 2003, Hong Kong, ISBN: 962-949-144-3, pp. 556-563 
 

 

Internet 
browser 
 

Word 
processor 
toolbar 
 

functions 
 

Hierarchy 
 

object 
metadata 
 
adding new 
attribute at 
run-time 
 
Content 
 
tagging of: 
- Headers 
- other 
specific tags 
- text 
formatting 
- multimedia 
integration 
 
  

 

Figure 4: Content specific WYSIWYG-interface 

 
 
Outlook 

 
The system is currently intended as an information system for human experts in combination with 

a content management system. The transformation of content data to the resulting product is an automatic 
process (e.g. XML to HTML). It is the question whether or not development, design, quality management, 
and other decision-making processes might be automated as well. The open plugin-interface theoretically 
could be used to implement such a holistic automation process. The major concern would be that such a 
process would need a more formal and less flexible semantic web and the transformation rules would 
require extensive  use of artificial intelligence.  

 
 

Summary 
 
Currently the system is used primarily to support the work of usability engineering for learning 

modules. The system’s database contains approximately 1400 context information objects (400 didactical, 
technical and ergonomic requirements objects, and 1000 evaluation objects), and 5000 content data objects 



In: Proceedings to ICCE 2003, Hong Kong, ISBN: 962-949-144-3, pp. 556-563 
 

from learning material. Using bidirectional links and inheritance proved helpful to structure and classify the 
evaluation results and to connect them to the project guideline. The decision review process runs more 
efficiently compared to the text-processor approach. Additional engineering is being done to optimize and 
adapt the views and the user interfaces to the needs of the process participants and to offer it to a broader 
project audience. The authors believe that a unified semantic web approach as described in this paper is an 
efficient alternative when working on a complex task such as learning material development with a large 
variety of human expertise. 

 
 

References 
 
Dzida, W., Freitag, R.: Usability Testing - The DATech Standard. In: Wieczorek, Meyerhoff 

(Editor): Software Quality - State of the Art in Management, Testing And Tools. Springer, New York, 2001 
 
Hartwig, R.; Kritzenberger, H.; Herczeg, M.: Course Production Applying Object Oriented 

Software Engineering Techniques. In: Proceedings of ED-MEDIA 2000, AACE, Canada, 2000 
 
Hartwig, R.; Triebe, J.K.; Herczeg, M.: Usability Engineering as an Important Part of Quality 

Management for a Virtual University. In: Proceedings of Networked Learning 2002 ICSC-NAISO 
Academic Press, Canada/The Netherlands. 2002 

 
Holtzblatt, K.; Beyer, H.: Contextual Design: Principles and Practice – In: Field Methods for 

Software and Systems Design. D. Wixon and J. Ramey (Eds.), John Wiley & Sons, Inc., New York, USA, 
1996 

 
IEEE: P1484.12/D6.1 - Draft Standard for Learning Object Metadata “LOM”, IEEE New York, 

USA, online: http://ltsc.ieee.org/  2001 
 
International Organization for Standardization: ISO 13407 - Human-centred design processes for 

interactive systems. International Standard, 1999 
 
Kritzenberger, H.; Hartwig, R.; Herczeg, M.: Scenario-Based Design for Flexible Hypermedia 

Learning Environments. In: Proceedings of ED-MEDIA 2001, Ontario, Canada, 2001 
 
Kritzenberger, H.; Herczeg, M.: Knowledge and Media Engineering for Distance Education. In: 

Stephanidis, Constantine (Ed.): Universal Access in HCI. Towards an Information Society for All. Volume 
3 of the Proceedings of HCI International 2001. Mahwah, New Jersey, London: Lawrence Erlbaum 
Associates, 2001, pp. 827-831  

 
Kritzenberger, H.; Herczeg, M.: Task-Model Driven Design of Adaptable Educational 

Hypermedia. In: Proceedings of Web-Net, Orlando, USA, 2001 
 
Rosson, M. B.; Carroll, J.M.: Usability Engineering – Scenario based development of human-

computer interaction, Morgan Kaufmann Pub.; San Francisco, 2002 


