
In: Proceedings of the ACIS Fourth International Conference on Software Engineering, Artificial Intelligence, Networking
 and Parallel/Distributed Computing (SNPD'03), Dosch, W., Lee, R. Y. (Ed.), ACIS (Pub.), October 16-18, 2003, Lübeck,
 Germany. ACIS 2003, ISBN 0-9700776-7-X pp 106-113

Using a Semantic Web for Process Information and Quality Management

Ronald Hartwig, Michael Herczeg

Institute for Multimedia and Interactive Systems, University of Luebeck

Willy-Brandt-Allee 31a, D-23554 Luebeck, Germany

{hartwig|herczeg}@informatik.uni-luebeck.de

www.imis.uni-luebeck.de

Abstract

This paper describes an approach (and its implementa-
tion) on how to handle the large number of data from
user centered engineering processes. It uses object-
oriented abstraction methods in combination with a se-
mantic web to cover the development process from the
requirements engineering throughout the final product.
The objects are made accessible using an easy to use
web-interface. The system is based on a simple but flexi-
ble XML-database.

1. Introduction

The basic idea of quality management processes is to
make all quality requirements and decisions transparent
and comprehensible. This targets the developers but also
quality managers and end users . Using dynamic, iterative
process models like the spiral model or extreme program-
ming (XP) produces a huge amount of such complex semi-
formal data. This data needs to be interconnected so
decion chains can be comprehended and evaluated. The
connections represent the dependencies of the process
information: Requirements are based on analysis data and
the development decisions are based on these require-
ments . In the end the resulting product should adhere to
the requirements. Evaluation data must be included to
prove this and to deliver valuable input for the next itera-
tion.

2. Original Scenario

Object-oriented analysis (OOA) and the following object-
oriented design process (OOD) focus on the description

of the interdependencies between system objects. The
main idea of the approach described here is to use this
powerful information management technique for
all process data. For example the raw data from use sce-
narios, user tests or empirical work and the derived re-
quirements may be modeled as objects as well as the OOA
data. This broadens the scope of exis ting CASE tools and
takes especially the user centered process steps into ac-
count.

A very important point while designing a tool support for
such a process data repository was the integration of very
different domains of knowledge. In typical development
processes not only developers but also organizational
experts, user interface designers, usability experts, domain
experts and end users contribute important information to
the development process. In order to support such par-
ticipatory design, the information must be made accessi-
ble in a simple and compact way. Readers must be enabled
to find valuable data for their area of responsibility with-
out having to browse and comprehend the whole process
data model. For this reason small and specialized views on
certain aspects are needed. For example users may only
want to validate their own scenario. They don’t need to
see whole information model, maybe dealing with techni-
cal requirements, in every detail. Quality managers may
want to concentrate on analyzing the decision chains
within the process. Developers need context information
for their current module but possibly do not have the time
to backtrack through the decision chains in detail.

3. Requirements

The model and the tool described within this paper have
been developed and used for a development process for
multimedia learning modules. It had to focus on different

domain experts from areas like pedagogies, usability, web-
design and software-design. We believe that the main
ideas of this approach may be used for other kinds of
(software-) development as well. The following general
goals apply:

1. Consistency of data during the whole development
process

2. Understandability of the data to all participants of
the development process including the end users.

3. Flexibility, scalability and adaptability to different
project sizes and quality requirements.

These goals are addressed using two main information
management methods:

• A semantic web, so that all related information is
interconnected. It should help to keep the data
consistent (section 3.1-3.3).

• Inheritance as known from object-oriented mo d-
eling helps to cope with the complexity and
amount of data. This addresses the issue of un-
derstandability (section 3.4).

The third goal of flexibility is considered in the rule-based
implementation concept (see sections 3.5 and 4).

3.1 Classes of Process Data

The central point of this approach is the object model as
described in Figure 1. Being based in the quality manage-
ment the notion of the “potential deficiency” is the cen-
tral object instead of the objects known from OOA or spe-
cialized human-factor approaches [4], [5].

Following an ideal process model and the ideas of itera-
tive development one would start with an analysis phase,
maybe using use scenarios or other techniques , to asses
the context information basis. After this, the intended use
and workflow would be described. This is part of the dy-
namic model. Additionally the intended static model is
described based on the context information. This is the
place were typical OOA information are held. The (techni-
cal, usability or other quality) requirements are then de-
rived from the analysis based on the context of use as well
as requirements which are dependent to the chosen dy-
namic or static concept. The requirements are then docu-
mented in guidelines and other process support docu-
ments . They are accessed by the developers during their
design work. The result is the product or, using version-
ing or rapid prototyping, a preceding version or proto-
type. All this is already described as OOD (object-
oriented design) and is not original to this model.

From practical use in the German flagship project “Virtual
University of Applied Science” (in German “VFH – Vir-
tuelle Fachhochschule”), the project “medin” (Multime-
dia-Based Distance Education in Medical Computer Sci-
ence) and the project “WissPro” (“Knowledge-Project:
Contextualized Computer Systems ”) we found that such
an ideal process was hard to realize. As known from the
description of the software crisis most projects do not
start with a proper context analysis. The main focus of our
work was to ensure quality even though some initial steps
have not made been performed to an optimal extent. We
call this approach “lightweight usability” [3]. Additio n-
ally the ideas of an ISO 9001 [6] compliant test procedure,
originally only focusing on usability engineering (see [1],
[7], [8]) were adapted to help validating requirements
against the context of use.

3.2 A Problem Centered Approach

The objects shown in figure 1 represent the typical engi-
neering phases [9] and ideally would be used clockwise.
But the proposed model is flexible enough to allow a re-
verse approach or starting with the evaluation of early
prototypes and going on to the context of use analysis [2]
in order to cope with insufficient requirements engineer-
ing activities . Practically the use of a product and the
evaluation give valuable hints on wether the context of
use analysis was precise enough or requirements are not
yet valid. Therefore the new object type “potential pro b-
lem” was added. An identified potential problem results
from findings from usage evaluation, e.g. empirical work or
user tests which is not yet verified to be a relevant pro b-
lem. These potential problems then are checked against
the already known context information and on its effect on
the intended use. The result may be that the problem does
not affect the normal use and can therefore be viewed as
irrelevant. Another finding may be that not enough analy-
sis data is available to judge the problem. These potential
problems get the central driving force within the process
and allow concentration on user and task relevant prob-
lems. It avoids doing quality management on already well
done or less important parts of the project.

One application of our approach was the interface design
of an e-learning system: most potential problems that were
found had to do with navigational issues whereas the
readability was almost no problem. With this in mind the
quality management process could concentrate on elabo-
rating requirements regarding navigational issues rather
than documenting readability criteria that all participants
already adhered to. More technical requirements like
availability were relevant in this special context too.

question

validate, extend, correct

determine

Analysis
Context of use,
goals, scenario

Concepts
usage, interface

Product

Evaluation
failures,
problems

Requirements
criteria, guidelines

(potential)
Problem

illustrate

reason

reason

reason

reason

reason

reason

determine determine

form

has

determine identifies

illustrate
justify justify

affect

Figure 1: Object model with interdependencies as associations (all associations are “none to many”-associations).

Why is it done?

Analysis:
Users use the system
irregularly and with long
interruptions

Concept:
Users should use
bookmarking mechanisms as
known from Internet
Browsers

Requirement:
Each document must allow
bookmarking as known from
internet browsers

Product
Button „Bookmark“

Evaluation:
Users don’t find the
bookmarking
mechanism

Potential Problem:
Users have to write down
where they stop but this is
not efficient or satisfying.

Why do they need it?

What is
 the result?

Where does it
happen?

Example

Possible solution

How is it implemented?

Why is it required?

Why?

Why? Is it a
problem?

Initiates

What should the
solution be like?

Figure 2: Example with some bi-directional associations

3.3 The Semantic Web

The interconnection of the information classes described
above define a semantic web. The annotations in figure 1
show a possible semantic interpretation of the association
of different object classes. This semantic web allows
backtracking all decisions from the product to the re-
quirements, the concept and its context of use.

The other direction allows propagation of new findings
through the development process. To support building up
such a bi-directional relational structure the tool automati-
cally generates bidirectional associations between ob-
jects.

The example (see figure 2) illustrates this mechanism:
While documenting the concept the responsible author
should refer to the context of use in order to justify his or
her decisions. Then the requirements engineer will refer to
the context of use as well as the concept to set up a re-
quirements document and a related development guide-
line. During development the developers use the devel-
opment guideline. Within the guideline they will find the
links to the reasoning for a guideline rule and may trace
back to the context of use information.

Quality managers document their findings as raw, often
informal information (like error reports or testing proto-
cols) and derive potential problems . These relate to the
context of use in which the problem appears. It is vali-
dated as a problem if it obstructs the intended use de-
scribed in the use scenario. This may lead to a new or
more detailed guideline and of course it points to a part of
the product where the problem appeared. Therefore the
developer may find a link to a potential problem while ana-
lyzing a requirement. This potential problem is then illus-
trated (if needed) by the raw evaluation data to help to
understand the problem. This has a valuable impact on
the acceptance of such guidelines. Developers tended, at
least in our project, to disagree with guidelines which
have no articulated reasoning. For a quality engineer it is
important to have the reasoning chain available, if devel-
opers ask for ratio nales.

Uni-directional decision chains could be implemented with
almost every hypertext system. In our approach the tool
support is to automatically add the inverse to all links and
inform the target as well as the source object, what kind of
object has been associated. In the above example the con-
text of use object literally knows which requirements and
concepts rely on it. If the context of use has to be updated
or corrected, the changes can be propagated through the
whole decision chain by looking at the associations re-
lated to the changed object. If a requirement is no longer

applicable because its foundation in the context of use
has changed, it is now possible to track down all depend-
ant decisions. Another example is that if quality engineers
find a problem within the product, the product receives a
notice on this problem, so while browsing through the
product, hints about problems may show up.

The example in figure 2 may illustrate how the tool may
help building a semantic web for the process information.
Most of the links between different process phases and
their related objects can be used both ways even though
the documenter may only have had one direction in mind.
Making this visible to all participants in the development
process and keeping all information in one system is the
goal of the proposed tool.

The alternative would be to document the requirements
and most of the process data using word-processors and
using UML for the system modelling without such con-
nections. CASE tools normally have no space for informal
data and no repository for multimedia evaluation data like
scenario pictures, plain text usage scenarios or user test
videos. This would probably lead to an inconsistent, large
and therefore hard to handle mix of documents in different
systems .

Observation

Type of test

Observation

Length
Date …

Observation

Video
Description
Summary

Potential
Problem

Description
Observation

Potential
Problem

Description

Tool

reason illustration

general general

detail (user)

detail
(critical

incident)

detail

* *

simplified view with
explicit inheritance

Observation

Type of test
Length
Date
Video
Description
Summary

* *

Potential
Problem

Description
(general &
detail)
Observation

Tool

internal Object structure

Figure 3: Example usage of explicit inheritance

3.4 Inheritance

The other main idea of the proposed tool is to use inheri-
tance and part -of relations to identify and document even
complex context of use and task attributes and all other
process data. Instances of the basic object classes de-
scribed before are structured hiera rchically using object
oriented abstraction methods like aggregation and inheri-
tance. The important difference of this framework com-
pared to the existing OOA and OOD techniques is the
more holistic approach. It integrates all the data from the
software lifecycle into one model instead of only the static
and dynamic model. But its similarity is the handling of
complex data. For example potential problems may be
structured in an object hierarchy with different abstraction
levels. Higher levels would describe the general impact
whereas on a lower, more detailed level a keystroke analy-
sis of the error may be documented.

One practical problem was to use such inheritance mecha-
nisms for users without a background in information mo d-
eling. It was not very realistic to exepct end users or do-
main experts to get an in-depth understanding of the ob-
ject oriented information modelling concept. Instead the
implicit inheritance of an object hierarchy was made ex-
plicit in a simplified view. This means that information
from higher levels could be viewed on lower levels with-
out the need of navigating through the object hierarchy.
This was crucial in order to integrate the data into the
living process instead of a model that would stand apart.
Practically special views show certain objects in a self
contained form which means that users only have to look
at single objects rather than the whole inheritance tree.
Figure 3 shows an example on how the different details for
a user test observation and a potential problem are speci-
fied on diffe rent levels.

Of course this only helps viewing the data and supports
minor changes in single objects. For adding objects or
constructing a hierarchie the object oriented model must
still be understood. But the main use of the tool was to
work as an information system, so mainly users read what
may be relevant for them. But even for the expert users the
immediate visibility of inherited information from higher
levels helps to avoid constructing contradictions or mu l-
tiple inconsistent instances of similar objects.

3.5 Flexibility

The last main requirement was the flexibility of the ap-
proach. In our project the process model was not very
elaborated in the beginning. It was not clear which kind of
information and to which level of detail would be avail-

able. Furthermore the process itself evolved and changed
in iterations during the project. Therefore there could not
be a conclusive XML-scheme or DTD (Document Type
Definition) in the beginning. Object attributes evolved
during the process development and therefore the ability
to change and maintain the object model itself during its
usage becomes a crucial requirement. Changes in the in-
formation model should be possible without the need of
changing the tool itself. Therefore, authorized users can
create new object classes or add attributes at any level
during the process and the tool has methods to handle
such new objects and attributes based on a flexible rule
concept.

Figure 4: System architecture

4. Implementation

The tool has been implemented using a client-server archi-
tecture (see figure 6) in conjunction with simple relational
database (mySQL). As a reference to the main concept of
inheritance (which has been discovered by Mendel) and
the use of XML for a flexible semantic meta-language the
tool is called “XMendeL”. In order to ease the access to
the process data three interfaces are available:

• Browser: A browser interface allows entering,
viewing and maintaining the data without any
additional software installation using an intranet
or the internet (see figure 5). Because of the
varying technical background of the users a ba-

sic toolbar from Microsoft Word™ is part of the
interface (see figure 6). It allows to format texts
and pictures within the objects. Structural work
is done using simple “add child object” or “add
attribute” functions. Documents, videos and
graphics (e.g. an UML diagram or an evaluation
video) are uploaded to the server and embedded
into special container objects. Standard objects
then may be associated with these non-XML
contents. This provides a simple migration op-
tion from other (CASE-) tools or word-
processors.

• Export-/Import: This interface serves the import
and export of files which then ma y be used by ex-
ternal programs, e.g. a LaTeX-typesetting en-
gine. This is useful to make static contents (like a
development guideline) available offline (e.g. as a
HTML-site) or to export XML-type output for
other programs. A flexible, rule-based Import-
Interface allows to re-use structured (not neces-
sarily XML formatted) data from external applica-
tions.

• .net/SOAP: Because of the limited possibilities
of the browser interface, especially for inexperi-
enced users, a direct access interface using the
SOAP standard is currently under development.
Using this applications as a remote access allows
users to keep their favorite program, e.g. MS
Word, for documentation purposes. The applica-
tion directly communicates with the XMendeL-
System and uses the described inheritance and
linking mechanisms . The system restructures
contents from the external application and stores
them as XMendeL-Objects.

All three interfaces may be used at the same time. Input
parsing and output formatting is done using a rule de-
scription language (similar to the Cascading Style Sheets
CSS from HTML and the XSLT transformation language
for XML), which defines rules on how to interpret or to
display/write the object contents. There are different
views on the same data for different tasks and user
groups: e.g. one HTML-view for inexperienced users, an-
other one for usability experts, XML for the file exchange
with other programs and finally a LaTeX-view for printing.

Context specific functions to interpret and adapt the data
may be added using an open plug-in interface. It allows to
add advanced and specialized data processing routines
which influence the parsing and formatting of the data
within this model without changing the system core.

Internet
Browser

Object type
and parents

inherited text

specific text

Link to other
object

formatted text

integration of
multimedia
parts

user definable
attributes

backtracking
information
- child objects
- other

Version data

 object functions
 object tree with Drag&Drop Support
 global functions

Figure 5: Example screenshot (generic object view)

5. An Integrated Development Environment
for Web-based Contents

Because of the flexibility of the rule-based concept other
possible applications were found and tested. The system
offers flexible objects with a powerful view controller, a
simple visual WYSIWYG-type (“What you see is what
you get”) interface in combination with the object-
oriented modelling. This flexible view-controller is a good
platform for content management. In combination with the
inheritance mechanisms new possibibilities on how to
store the domain contents arise. In our e-learning projects
the desired products were HTML-sites with interactive
contents. XMendeL was used as a development and au-
thoring platform in the sense of a content management
system (CMS). The final product could be exported from
within the system and could then be used without as a
stand-alone web site.

Even though the tool was not originally intended to be
such a content management system it showed how much
such a simple interface (figure 6 shows an example of a
task specific edit view) to large scale content databases
was needed and appreciated. Even inexperienced users
like external physicians which developed parts of the
module contents were able to work directly on the product
without interfering with the remaining process.

Unlike exitsing authoring software the main advantage of
this application is that all process data (analysis data,
requirements, styleguides, evaluation data) including the
product itself, could be stored in the same database. Defi-
cient pages of the e-learning modules contained links to
the rule they violate. Developers were then able to look
up, why this rule was established. Quality engineers could
use the database to look up how they decided on special
issues earlier and comprehend sometimes long gone (up
to 4 years) decisions again.

Internet
browser

Word
processor
toolbar

functions

Hierarchy

object
metadata

adding new
attribute at
run-time

Content

tagging of:
- Headers
- other
specific tags
- text
formatting
- multimedia
integration

Figure 6: Example screenshot (specialized edit view)

6. Conclusion and Outlook

The basic idea, to combine a databased hypertext content
management system, inheritance mechanisms from the
object-oriented analysis and a server based approach,
proved to be unexpectedly applicable and useful in differ-
ent contexts. The tool is compatible to other processes
and does not restrict the user to a fixed model which may
be inadequate for his or her special project. The granular-
ity and the amount of data can be scaled with respect to
the available resources. The XML-export /import interface
allows migration to other tools as well from other tools.
This helps introducing this tool into existing projects and
offers a way back if needed. The practical advantages of
the tool were the ability to support a simple cooperative
content ma nagement, the possibilities to structure the

heavily interconnected decision making process,
espacially the quite informal raw evaluation data like user
test protocols.

The system currently holds about 15.000 (!) data objects
and is in daily use for the development and (quality) ma n-
agement of online learning material as well as classic class
teaching support. It is still under development in order to
improve its usability and the visualization of the complex
data structures. We hope to be able to offer this system to
an interested public in a near future.

7. REFERENCES

[1] W. Dzida, R. Freitag, R.: “Usability Testing - The
DATech Standard” In: Wieczorek, Meyerhoff (Editor): Soft-
ware Quality - State of the Art in Management, Tes ting And
Tools. Springer, New York (USA), 2001

[2] R. Hartwig; M. Herczeg: “A Process Repository
for the Development of E-Learning Applications” In Proceed-
ings of the IEEE ICALT 2003, Athens, 2003, pp. 346-347

[3] R. Hartwig; C. Darolti; M. Herczeg: “Lightweight
Usability Engineering Scaling Usability-Evaluation to a Mini-
mum?” In Jacko, J., Stephanidis, C. (Publ.): Human Computer
Interaction - Theory and Practice (Part I), Lawrence Erlbaum
Associates Publishers, London GB, 2003, pp. 474-478.

[4] M. Herczeg: “A Task Analysis Framework for
Management Systems and Decision Support Systems ” In: Pro-
ceeding of AoM/IaoM. 17. International Conference on Com-
puter Science, San Diego, California, August 6-8th, 1999, pp.
29-34.

[5] M. Herczeg: “A Task Analysis and Design
Framework for Management Systems and Decision Support
Systems ” In: ACIS International Journal of Computer & Infor-
mation Science, Vol. 2, No. 3, September 2001, pp. 127-138.

[6] International Organization for Standardization:
“ISO 9001 – Quality management systems - Requirements”
International Standard, 2000

[7] International Organization for Standardization:
“ISO 9241 - Ergonomic requirements for office work with visual
display terminals” Parts 1-17. International Standard, 2000

[8] International Organization for Standardization:
“ISO 13407 - Human-centred design processes for interactive
systems ” International Standard, 1999

[9] B. U. Pagel, H. W. Six: “Software Engineering -
Band 1: Die Phasen der Softwareentwicklung” Addison-Wesley,
Bonn, 1994

