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Abstract

Interactive visualisation and analysis of time series data is a critical part of many data-driven optimisation processes, particularly
in Industry 4.0 and Smart Manufacturing. Time series visualisation enables data analysts or domain experts to visually identify
problems such as missing values, sensor drift, precision degradation, or faulty data, before or after algorithmic analysis. A common
technique to support the visual exploration of large time series is the overview+detail (O+D) technique. O+D provides both detail
and context information by displaying a detailed view showing the actual data and a thumbnail overview for showing its context.
User studies have shown that users analyse and navigate data sets more efficently and effectively with than without O+D, but that
this strongly depends on the task and the nature and amount of the data to be displayed.

We present results of a quantitative user study that was performed on Amazon Mechanical Turk with 95 participants to identify
scenarios in which O+D could not effectively solve the challenge of visualising large time series. By this, we identify potential
usability issues of O+D for typical time series analysis tasks and discuss their origins. For each of these usability issues, we also
propose alternative interaction and visualisation designs or other strategies to maintain good usability, even for challenging task
types and data densities.
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1. Introduction

Industry 4.0 and Smart Manufacturing often rely on data-driven optimisation of business and manufacturing
processes, €.g., using sensor or process data for predictive maintenance [36, 37, 48], smarter logistics [8, 44], or better
quality assurance [8, 17]. In such scenarios, it is common that time series data, e.g., large data sets containing sensor
measurements or performance indicators over time, need to be visualised to enable data analysts or domain experts to
interactively review the data before or after algorithmic analysis [48]. For example, interactive time series visualisation
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is of critical importance for visually identifying problems such as missing values, sensor drift, precision degradation, or
faulty data.

Using interactive visualisation for time series analysis is a typical example of visual analytics [28]. By enabling
users to interactively visualise data and adjust parameters, visual analytics seamlessly integrate human skills into
the semi-automated analysis process to allow users to see, explore, and understand large amounts of information at
once [43]. During interactive analysis and reviewing results, visual analytics also enable experts to apply their tacit
domain knowledge that is otherwise difficult or even impossible to formalise [28]. In conclusion, visual analytics
of time series data has become a critical part of many data-driven processes, particularly in Industry 4.0 and Smart
Manufacturing.

A very common technique to support the visual exploration of large time series on displays of limited sizes is
the overview+detail (O+D) technique [14]. O+D provides both detail and context information by simultaneously
displaying two spatially separated rectangular views; one for the context and one for a more detailed perspective at a
higher magnification level [35]. In other terms, O+D interfaces are specialised multi-window arrangements, always
displaying the entire content of the time series (or document or map, depending on whatever data set is to be shown) in
a compressed form in an overview and a subset of the content in much greater detail in the detail view [23, 24, 35, 46].
Thereby, the detail view is usually a much larger area or covers the entire rest of the screen and shows a close-up of a
portion of the content. The overview usually has a visual marker, highlighting the position of the detail view within the
overview (Figure 1). This visual marker in the overview helps users to locate the content of the detail view in relation to
the overview, so that they do not lose spatial orientation when zooming too far in or out of the data, i.e., getting lost in
“desert fog” [27]. Overviews can also be provided in the form of embellished scrollbars [14] that, in contrast to regular
scrollbars, additionally portray semantic information, e.g. values or ranges within a time series (Figure 1).

Detail View

Subset of Timeseries ™\

Visual Marker

Overview
Complete Timeseries ™

Fig. 1. Schematic view of an O+D chart for time series data. A detail view shows a smaller amount of data in great detail at the top. Below that, there
is an embellished scrollbar as overview that shows a thumbnail view of the entire time series.

Since its early beginnings in 1980’s video games [14], O+D has become a ubiquitous interaction and visualisation
technique for zooming and panning in maps (e.g. in Google Earth') and documents (e.g. as “navigator panel” in
Photoshop?), for scrolling in thumbnail representations of text files (e.g. the “minimap” of the Sublime editor?), and
also in time series visualisation (e.g. as “range selector” in dygraphs®, Figure 1 A-D). Several user studies have shown
that with O+D users are enabled to analyse and navigate data sets more efficiently and effectively than without O+D.
However, this depends on the task as well as the nature and the amount of the data to be displayed [12, 23]. O+D is

! https://www.google.com/intl/en/earth/, Accessed June 2020
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said to improve usability and task efficiency [39] but there are cases in which it was slightly detrimental (e.g. for maps
[23]) or even clearly detrimental (e.g for scatter plots on small mobile screens [13]).

In this paper, we therefore identify task-specific limitations of the O+D visualisation technique when performing
typical tasks of time series analysis in the context of Industry 4.0 or Smart Production. To the best of our knowledge,
there is yet no detailed study of this kind, particularly not differentiating between the typical tasks and data densities in
such scenarios. We conducted a quantitative user study on Amazon Mechanical Turk with 95 participants and discuss in
which cases our general hypothesis, i.e. O+D effectively solves usability issues of visualising time series data, could not
be confirmed. By this, we identify potential usability challenges of O+D for Industry 4.0 or Smart Production scenarios
and discuss where these problems could have resulted from. For each observed issue, we also propose alternative
designs or strategies that could help to solve these usability problems and to maintain effectiveness even for the more
challenging task types and data densities.

In the following, we will first summarise related work to provide a theoretical background for our research. We
then describe our task and study design. This is followed by a statistical analysis of our results and their discussion,
including proposals for redesign and strategies to solve the observed usability problems. We conclude with discussing
limitations and future work.

2. Related Work

Time series visualisations are used in various fields, ranging from financial data analysis to the exploration of sensor
data from production plants. Different application fields require different tasks and amounts of data. For example, in
financial data analysis, it might be of greater interest to identify long-term trends in the data using an overview, whereas
analysts of sensor data might be more interested in spotting spikes or recurring patterns in a detail view. It is therefore
not possible to easily generalise from the conclusions of previous and related work. Instead, we here revisit some O+D
foundations and discuss task-specific nuances.

2.1. Revisiting the Benefits of O+D

0O+D techniques have been discussed in human-computer interaction research since the early 1990s, e.g. by Beard
and Walker [7] and Plaisant et al. [35]. In 1997, Shneiderman suggested that a two-window O+D visualisation for
maps and zoomable user interfaces is useful for zoom factors (i.e. magnification ratios between overview and detail
view) of 5.0 to 30.0, after which a cascade of overviews could be better [39]. This contradicts more recent studies for
more specific tasks that revealed that an overview might not be necessary at all (or even harmful) and could or must be
omitted to save screen real estate [23], especially for mobile devices [12, 13]. All these studies, however, did not focus
on one-dimensional navigation in time series but on two-dimensional navigation in maps, scatter plots, or documents.

When using O+D for time series, there are further effects that need to be considered: For example, an overview
with low display resolution could lead users to wrong conclusions, as spikes in the data get lost due to the aggregated
visualisation [18, 19], an effect that also played a key role in our study.

Furthermore, in time series visualisation with O+D for Industry 4.0 or Smart Production, users also typically need
much higher zoom factors than the aforementioned 5.0 to 30.0 from [39] since the data is measured over long periods of
time and at high sampling rates. In our study, we therefore use three different data amounts (or data densities DD1-DD3)
between overview and detail view. While DD1 and DD2 stay roughly within Shneiderman’s range for zoom factors
between 5.0 and 30.0 [39] (Figure 2 B-D), DD3 has a zoom factor of 103.8 (Figure 2 A).

Similarly, results from user studies in the 1990s or early 2000s may need to be critically revisited for today’s much
larger and higher-resolution displays. To account for changes in average screen size and resolution since the 1990s and
early 2000s, we recruited 95 participants who worked with their own personal screen setup from 2019 and thus with a
more realistic sample.

In addition to changing technology, human-centred constraints may also cause non-trivial changes in user per-
formance. Although technology supports displaying high volumes of data, this does not necessarily mean users are
cognitively capable of working with this amount of visual information [6, 16, 41]. Again, it seems sensible to revisit
results from 1990s and 2000s given the growth in IT literacy in the user population.
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2.2. Advanced Techniques for Time Series Visualisation

There are various advanced techniques for the visualisation and analysis of time series data. VisTree [32] and
TimeSearcher [10] facilitate O+D techniques and focus on efficient pattern discovery. Buono et al. extend this approach
with multiple views to visualise forecasting in time series [11]. A detailed overview of approaches, techniques, methods,
and tasks for time series exploration can be found in [4] and [2]. Others use advanced focus+context techniques to allow
for zooming into data directly within an overview [5, 29, 30] and research on perception and visualisation of multiple
time series exists [21, 26]. Perin et al. performed an evaluation for pan and zooming techniques in multiple time
series [33]. Lam et al. compared the use of low resolution against high resolution overviews during the visualisation
of multiple time series [31]. Another task that often occurs is the comparison of values between different charts.
Horizon graphs [22] compare values between charts for different data densities. Another approach, that uses different
data resolutions in charts was introduced by Isenberg et al. [25]. An evaluation of existing methods for time series
visualisation and interaction techniques was performed by Walker et al. [45]. Another study focused on the perception
of time series with different interactions and visual encodings for various tasks [1].

All the aforementioned work focuses on advanced interaction and visualisation techniques that extend the O+D
concept. However, our research shows that in real-world practice these techniques are rarely used and simple O+D
implementations with an embellished scrollbar that contains a thumbnail representation of the data, remains the gold
standard (Figure 1 A). Even for such comparably simple implementations, there is generally little research on O+D
benefits or limitations and, in particular, no research that we are aware of for those tasks that are typical in Industry 4.0
and Smart Production scenarios.

3. User Study

Our main assumption for the design of our study was that O+D is an effective and efficient technique for time series
analysis, but that it can fail, or at least expose limitations, for specific Task Types (TT) and Data Densities (DD). We
therefore conducted a quantitative experiment on Amazon Mechanical Turk® (MTurk) with 95 participants to measure
task Completion Time, Response Accuracy, self-reported Mental Effort, and self-reported user Satisfaction for four
different analysis tasks and three DDs. Concretely, Completion Time is the time the users took to complete a task,
Response Accuracy describes whether the answer was correct. After each task we then asked the participants how they
would rate their Satisfaction with the visualisation and their Mental Effort for that task. Since we were using MTurk,
we could not control for screen resolution or size other than to ask participants to use their desktop computer. However,
this provides us with ecological validity in terms of typical screen sizes and resolutions in 2019.

We identified the most challenging combinations of 77 and DD, meaning those combinations that resulted in a
significantly longer Completion Time, lower Response Accuracy, higher Mental Effort, or lower Satisfaction. We
could then provide discussion and interpretations of the collected data to suggest possible explanations and to propose
alternative designs or strategies.

3.1. Task Design

There is a great variety of different tasks for time series analysis [2, 4]. For our study, we chose four tasks typically
used to get an overview of a time series and its initial analysis:
Task 1: Trend Identification: Tasks like this commonly occur in a financial context when analysing market trends [38]
or in smart manufacturing, i.e. when analysing power consumption trends over a larger time period [42] or sensor drift.
Participants had to report the current direction of a trend in the data (increasing, decreasing, or no trend observable), see
Figure 2 (A). Question: “Please examine the overall distribution of the data and evaluate the global trend (decreasing,
increasing, not observable).”
Task 2: Discrimination: The second task was a Discrimination task for which users had to look up and compare eight
data points that were highlighted by red lines in both, the detail view and the overview, and report the highest value,
see Figure 2 (B). This 77 usually occurs in a scenario where an algorithm suggests and highlights candidates for data
points in the time series data that could be especially interesting or indicative for a relevant event. A user then needs to

5 mturk.com, Accessed June 2020
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Fig. 2. Four screenshots (A)-(D) of our O+D implementation in the user study. Each screenshot shows a different task: Trend identification (A),
Discrimination (B), Extreme Value Identification (C), and Pattern Recognition (D). (A)-(D) also illustrate differences in data density in the overview:
The overview contains 27,500 data points (DD3) in (A), 8,250 (DD2) data points in (B), or 1,375 (DD1) data points in (C&D). The detail view
always contains 265 data points.

assess the marked points, discriminate their values, and decide whether a specific data point is actually of interest based
on its value and context. Similar tasks were analysed in the Discrimination tasks of the studies of Heer et al [22] and
Javed et al [26]. To simulate a discrimination task, Question: ‘“Please find the marks highlighted in red and report the
largest value.”
Task 3: Extreme Value Identification: The third task was a Extreme Value Identification task meaning that users had
to identify the largest value in the entire time series, see Figure 2 (C). This 7T occurs for example in the analysis of
outliers in sensor data from smart grids [40]. Question: “Please find the largest value in the interactive visualization.”
One maximum peak per data record.
Task 4: Pattern Recognition/Similarity: The fourth and most challeging task was Pattern Recognition. Identifying
patterns and analysing their context plays a major role in the monitoring of manufacturing processes [42]. In our study,
one small section of the data was highlighted in yellow to emphasise a pattern the participants should look for in a
larger section highlighted in green. Then they had to report how many times they had encountered the pattern in the
green section, see Figure 2 (D). Question: “The following visualization shows a pattern highlighted in yellow. Please
report how often the pattern reoccurs inside the green area.”

In the following, we describe how these tasks were presented to the participants and how they were asked to complete
them.

3.2. Data Sets

Similar to other studies [3, 15, 20, 22, 26] we used synthetic data for our user studies to be able to control the data
values and amount of data for the different tasks. Since we focused on different DDs (DD1 - DD3) we created a small
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data set (DD1) with 1,375 data points, a medium sized data set (DD2) with 8,250 data points, and a large data set
(DD3) with 27,500 data points for each of the four tasks. However, for more precise analysis of Task 1, we treated
identifying increasing trends and decreasing trends as separate tasks resulting in Task la (increasing trend) and Task 1b
(decreasing trend). Thus, we used 15 data sets in total.

3 data densities X 5 tasks = 15 data sets

For generating the consecutive data points of a time series, we developed a synthetic Auto Regressive Moving
Average (ARMA) model [9]. Although ARMA models are traditionally used to describe existing time series, we
repurposed a synthetically parameterized model to serve as a time series generator. The developed model consists of a
constant base value, a random, normally distributed noise term, which mimics signal or measurement noise in our case,
and the weighted moving average values of past signal values and noise terms. In order to simulate the targeted data
phenomena (see Figure 2 A-D) , we modified the ARMA model accordingly during the generation process at certain
points of time.

For Task 1a (Increasing Trend) and Task 1b (Decreasing Trend) we used a positive or negative slope to gradually
raise or lower the mean value over time.

For Task 2 (Discrimination) and Task 3 (Extreme Value Identification) we inserted spikes by adding an increment of
up to 4.5 to randomly selected values. To control task difficulty and time, each data set had a maximum of eight spikes
(one maximum spike, seven distractors). For Task 2 we then manually selected eight spikes per data set and marked
them with a red line.

For Task 4 (Pattern Recognition) we created patterns consisting of 25 to 55 consecutive data points with lower
values. Each data set for this task contained between four to eight of these patterns (see Figure 2 (D)) and there were no
distractor patterns that looked similar to the real one.

3.3. Prototype Implementation

The prototype was implemented as an interactive web visualisation using dygraphs® and the meteor framework’. It
shows 265 data points in the detail view and, depending on DD1-DD3, either 1,375, 8,250, or 27,500 data points in the
overview.

Since users have to navigate to different areas in the detail view in order to read the exact values, all tasks except
for the trend identification require interaction with the time series visualisation. Therefore, the design supports two
interactions: (1) Panning: Scrolling through the data sets by left clicking and panning the mouse in the detail view or by
left clicking and panning the highlighted area in the overview. (2) Mouseover tooltips: Visualising the exact y-value for
a data point at position x when hovering over it with the mouse.

3.4. Participants

We recruited 96 workers on MTurk. We had to reject one worker, since based on the overall time needed and
the answers it appeared that he had simply clicked through the study and entered random values. Thus, only the 95
approved workers were used for the analysis and consequently only these 95 workers are reported as participants. Out
of the 95 participants 42 were female, 51 were male and two preferred not to disclose their gender. The average age
was 39,8 years and ranged from 24 to 69 years. All participants except two were located in the United States. The
study took about 35 minutes to complete and each worker was paid ten USD for participation. This is clearly above the
minimum wage of 7.25 USD per hour in the United States.

3.5. Measurement

Independent variables: Our first independent variable is Data Density (DD) (1,375, 8,250 and 27,500 data points),
which represents the zoom factors introduced by [39]. DD with 1,375 data points corresponds to a zoom factor of
of 5.2, see Figure 2(C&D), DD2 with 8,250 data points matches a zoom factor of 31.2, see Figure 2(B), and DD3 is

® http://dygraphs.com/, Accessed June 2020
7 https://www.meteor.com/, Accessed June 2020
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the equivalent of a zoom factor of 103.8, see Figure 2(A). The second independant variable is Task Type (TT) (Trend
Identification, Discrimination, Extreme Value Identification, Pattern Recognition).

Dependent variable: For our dependent variable we use Completion Time, Response Accuracy, Satisfaction and
Mental Effort. Completion Time was collected by the Online Survey tool® in miliseconds (ms), based on how long
the users took to continue to the next page. Response Accuracy is a binary variable which is either 1 (correct) or 0
(incorrect). Satisfaction was determined using a 5-point scale that ranged from 1 (very unsatisfied) to 5 (very satisfied).
For Mental Effort we used a 7-point scale ranging from 1 (Very low mental effort) to 7 (Very high mental effort).

4. Results & Discussion

A total of 1,425 individual trials were carried out by our 95 participants. Six trials had to be deleted due to missing
data. Similar to other research where MTurk was used for evaluating visualisations [34], we eliminated outliers that
could result from the absence of a human experimenter during the study by excluding trials that took less than 5% of
the maximum task completion time (28 trials) or more than 95% of the maximum task completion time (41 trials).
Therefore, the study analysis has been carried out with 1,350 trials.

95 participants X 5 tasks X 3 repetitions — 75 excluded trials = 1,350 trials

We checked for significant differences in our dependent variables for each DD in each TT. For Time and RA we
conducted a one-way between groups ANOVA with Post-Hoc Tukey HSD Test for each task. For ME and SAT we ran
a Kruskal-Wallis Test as a non-parametric alternative, see Figure 3 for an overview of the results.

4.1. Task 1: Trend Identification

Results: For Task I none of the dependant variables in the tests we conducted showed a significant difference for
DD1-3. ANOVA Completion Time: F(2, 567) = 0.50, p = 0.61; ANOVA Response Accuracy: F(2, 567) = 0.55,p =
0.58; Kruskal-Wallis Satisfaction: X%(2) = 0.00, p = 1.00; Kruskal-Wallis Mental Effort: X%2(2) = 0.24, p = 0.89.

Additionally, we analysed the tasks for the positive trend and the tasks for the negative trend separately. However,
there was no difference in either of the tests.

Task la Positive Trend: ANOVA Completion Time: F(2, 282) = 0.20, p = 0.82; ANOVA Response Accuracy: F(2,
282) = 0.09, p = 0.92; Kruskal-Wallis Satisfaction: X%(2) = 0.00, p = 1.00; Kruskal-Wallis Mental Effort: X%(2) =0.22,
p = 0.90.

Task 1b Negative Trend: ANOVA Completion Time: F(2, 281) = 0.50, p = 0.61; ANOVA Response Accuracy: F(2,
281) = 0.60, p = 0.55; Kruskal-Wallis Satisfaction: X*(2) = 0.01, p = 1.00; Kruskal-Wallis Mental Effort: X*(2) = 1.08,
p =0.52.

Discussion: Therefore we found no difference between the three different zoom factors in Task I. This result is
consistent with our expectations, considering the fact that it was possible to identify the trend by simply looking at
the overview. Thus, it is not necessary to achieve optimal usability and mental effort to provide a detail view or a
high resolution overview for a simple Trend Identification Task. The most important part of the data representation is
therefore a simple overview. Without an overview, participants would need to interact with the detail view a lot more,
since it would be necessary to use the panning option to scroll through the whole data.

4.2. Task 2: Discrimination

Results: Similar to Task 1, none of the tests we conducted for 7ask 2 revealed a significant difference. ANOVA
Completion Time: F(2, 261) = 0.46, p = 0.63; ANOVA Response Accuracy: F(2,261) = 0.14, p = 0.87; Kruskal-Wallis
Satisfaction: X*(2) = 0.02, p = 0.99; Kruskal-Wallis Mental Effort: X*(2) =297, p =0.23.

Discussion: As in the previous task, there seems to be no effect caused by the different zoom factors in Task 2. This
result can be explained by the nature of the task. In all trials the users had to compare eight marked data points.The
red marks in the overview and detail view are visible in Figure 2 (B). Therefore, there was no difference in workload

8 https://www.limesurvey.org/de/, Accessed June 2020
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Fig. 3. Overview of the results for each DD in each TT: Average Completion Time in ms (A), Average Response Accuracy in % (B), Average Mental
Effort (C) and Average Satisfaction (D). The asterisk and curly brackets marks the statistically significant differences.

for the users. However, it is important to provide an overview for this kind of tasks as it enables the users to navigate
directly to the marked data points. Similar to 7ask I it is not necessary for the overview to have high resolution since
the most relevant information in the overview are the marks in the data.

4.3. Task 3: Extreme Value Identification

Results: For Task 3 we found a significant difference between the different DDs regarding Completion Time (F(2,
262) = 4.03, p = 0.02) and Response Accuracy (F(2, 262) = 6.68, p = 0.00).

Post-Hoc Comparison using a Tukey HSD Test revealed that for the Completion Time DDI (M=106,857.01;
SD=67,677.13) was significantly different from DD2 (M=83962.33, SD=53116.79) and DD3 (M=84,816.93;
SD=60,181.81).

For Response Accuracy it similarly showed that DDI (M=0.63, SD=0.49) was significantly different from DD2
(M=0.41, SD=0.50) & DD3 (M=0.39, SD=0.49).

The Kruskal-Wallis Test found no significant difference between the groups for Satisfaction X*(2) = 0.03, p = 0.99)
and Mental Effort (X*(2) = 0.97, p = 0.62).

Therefore, it took the users longer to complete the task when the zoom factor was small. However, the Response
Accuracy was significantly higher for the smallest zoom factor. The medium and the large zoom factor lead to a faster
task completion while lowering the percentage of correct answers significantly.

Discussion: One possible explanation for this phenomenon is that with a lower zoom factor like in DD/ the users
can identify each peak in the data by simply looking at the overview. The task itself is then similar to Task 2. The user
simply navigates to every peak they see in the overview. However, with the higher zoom factors, like in DD2 and DD3,
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more data points have to be displayed per pixel in the overview. Thus, with common aggregation functions, like the one
used in this study, the overview will render a mean of the values that have to be displayed on each pixel. This results in
some peaks not being visible at all within the overview. This issue of low resolution has also been reported in previous
research [7, 31]. The users then need to navigate through all data points in the detail view. To do so, users often pan the
overview and use it like a scroll bar. However, with higher DD, like DD2 & DD3, this automatically leads to a lower
control display ratio. Thus, a small movement of the pointing device in the overview leads to faster scrolling in the
detail view, covering a larger amount of data points than a similar movement in DD/. While this interaction technique
enables the user to quickly go through the data and usually results in lower completion time, it may also lead to the user
overlooking some of the peaks. Thus, the time needed for completing the task is lower but there is a higher percentage
of incorrect answers.

Design Implications: This problem could be solved by applying a different method that considers data point
importance when rendering the overview.Such an approach is described in [19] using perceptually important points.
This would enable the user to identify the peaks in the overview even with large zoom factors.

4.4. Task 4: Pattern Recognition

Results: Like for Task 3 we found a significant difference between the DDs for Task 4 when it comes to Response
Accuracy (F(2,248) = 33.63, p = 0.00). However, there was no significant difference in the Completion Time (F(2, 248)
=1.97,p=0.14).

A Post-Hoc Tukey HSD Test revealed that DD3 (M=0.09, SD=0.29) is significantly different from DDI (M=0.59,
SD=0.50) & DD2 (M=0.58, SD=0.50).

The Kruskal-Wallis Test found no significant difference between the groups for Satisfaction X*(2) = 0.08, p = 0.96)
and Mental Effort (X*(2) = 1.07, p = 0.59).

In summary, there is no significant difference in either Completion Time, Mental Effort or Satisfaction. However,
Response Accuracy is significantly lower in the condition with the largest zoom factor.

Discussion: This may be due to the fact, that with the lower zoom factors of DDI & DD? the patterns can still be
identified by looking at the overview. However, for DD3, patterns are no longer clearly visible in the overview. The
user therefore has to scroll through the data. As mentioned above, the control display ratio is much lower in DD3. Thus,
users can easily overlook a relevant pattern.

Design Implications: To overcome this challenge for high DD, higher factors for control display ratio may be
helpful.Users would then take longer to scroll through the whole detail view, however, it may be easier to find patterns.
A different approach would be a fish eye lense in the overview, similar to distortion lenses like described in [29]. This
interaction technique would enable the user to quickly run through the overview using the lense to identify similar
patterns. In that case a detail view might not be necessary at all. Another option would be to implement an interaction
technique where users can sketch or highlight a pattern they would like to look for and an algorithm runs through the
data highlighting those patterns, similar to [11, 47]. Like in 7ask 2 the user would then simply navigate to the marked
areas and decide if the pattern is relevant for their analysis, based on the context of the data points surrounding the
pattern.

5. Conclusion

In this paper, we reported the results of an experimental user study on the limitations of overview+detail in time series
analysis. Visual analysis of time series data enables domain experts in fields like Industry 4.0 and Smart Manufacturing
to identify problems while drawing on their implicit domain knowledge. We looked at the differences in Completion
Time, Response Accuracy, Mental Effort and Satisfaction which are caused by different zoom factors in four different
tasks. Our results showed no differences for all dependent variables for the Trend Identification and Discrimination
task, but revealed a difference in Completion Time and Response Accuracy in the Extreme Value Identification Task and
a difference in Response Accuracy in the Pattern Identification Task. Since we did not study the influence of screen size
and resolution on the four dependant variables, this could be addressed by future work using a controlled in person
experiment. Furthermore, we discussed interaction techniques as well as visualisation techniques (such as reducing
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the overview dimensionality by using perceptually important points or using distortion lenses within the overview) to
mitigate the challenges posed by high zoom factors within these tasks.
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