Designing and Using Human—Computer Interfaces and Knowledge Based Systems
edited by G. Salvendy and M. J. Smith 605
Elsevier Science Publishers B.V., Amsterdam, 1989 — Printed in the Netherlands

USIT: A TOOLKIT FOR USER INTERFACE TOOLKITS

MICHAEL HERCZEG
ANT Telecommunications, D-7150 Backnang, Fed. Rep. of Germany

SUMMARY

This paper deseribes the USIT user interface toolkit. USIT serves to create specinlized nser
inferfaee toolkitse T enables o nser inberface programmer Lo vepresent nser aned applieation
dependent interaction methods as nser interface hailding blocks. The basie methods to per-
forin this are specification, specialization, and aggregation of user interface building blocks,
A large collection of predefined hlocks is available to build standarvd nser interfaces. With the
aid of the USIT Metasysteni, sm already runuing user interface may be changed interactively
without programming skills.

1 INTRODUCTION

Building user interfaces is afllicted with some characteristie problems (cf. [Lowgren 88)):
o User and application requirements for user interfces vary heavily duving and after
conslruction of application systems.

e 1/O-hardwire often chinges Tster thim the application software. Standards nsually are
between & and 10 vears heliind techmologieal Teasibility,

Currently, there are no means for formal specification and automatic generation of
complete user interfaces for non-trivial applieations.

Existing user interface toolkits are either too low level or too restricted fo he really
helpful. They have been built as generic tools to be nsed for any kind of user interface
and are therefore lacking support for application dependent interaction styles.

¢ Most user interfaces cannot be changed iuteractively at runtime to explore design al-
ternatives. After being complefed by the programumer, they loose their software cha-
racteristics and ave like hardware for the user.

As a result, many user interfaces conlineted are inadequate from application programmers’
as well as from end users’ point of view [Herezeg 86).

Fndd nsers mineh too olten have Lo cope with interaction methods that are inadeguate for
their specinl application problems and either highly inconsistent or monotonons in nse and

appearance like many menu- and form-based user interfaces.

606

Programmers are virtually unable to make substantial changes to user interfaces within
acceptable time. This is especially true for user interfaces providing complex interaction
methods like diveet manipulation.

A break-through in user interface design emerged in the late 70s with systems built at
Xerox PARC: Well known examples are the Smalltalk environment [Goldberg 84] and the
Xerox Star [Smith et al. 82]. Both demonstrate the direct manipulation paradigm with a
rich user interface and both are hased on o user interface toolkit.,

2 REQUIREMENTS

User interface toolkits are still the most promising approach for advanced user interface
development. Unfortunately, even existing prototypical toolkits do not provide all of the

expected and neecessary support for the programmer.

What is needed, are nser interface toolkits with the following properties:

Modularization: User interface building blocks (UIBBs) should be construcled as eneapsi-
lated software modules with clearly defined programming interfaces which are adeguate
for the applications.

Specialization: Existing UIBBs should be specializable in order to alter their appearance
and behavior to some extent. This is the first way of tailoring the toolkit for special
applications.

Aggregation: Existing UIBBs should be easily aggregateable to more complex ones, which
should be nsable as high level building blocks themselves without showing all of their
complex interior. This is the sccond way of tailoring the toolkit to special application
needs,

Extension: A user inferface toolkit should be designed as an open system, providing tools
to build new UIBDBs that cannot be built out of already existing ones by specialization
or ageregation. This is the thivd way of enstomizing the initial toolkit for special classes
of applications.

Generality: A broad spectrum ranging from traditional inenni- and form-oriented to graphie-
based, direct manipulation interaction methods has to be supported by the initial tool-

kit.

3 THE USIT SYSTEM

During the past 6 years at the University of Statigart, we developed the user interfice toolkit
USIT as a part of the user interfuce management system INFUIMS [Herezeg 87 Herezeg 88,
trying to fulfil the requirements mentioned above to a high degree. Like many other user
interface toolkits, USIT has been implemented in an object-oriented programming language
(ef. [Lipkie et al. 82,Goldberg 84.Sibert et al. 86,Symbolics 86). Some of the requirements
are considerably supported by the object-oriented progrimmming pavadigin:

o It is quite natural to deseribe UIBBs as objects. The parameters of an interaction
method are represented as slots and the UIBB functionality is modelled as methods.

607

o Communication between ohjects is exclusively performed via message passing. The
interface definitions are the method filters, which can be inspected and modified casily.

o Classes deseribe sets of similar objects by specifying their attributes and methods. They
serve as UIBB generators. Class or pool slots allow to describe or change the behavior
or appearance of all of the class’ instances.

e Classes may be linked into an inheritance lattice or hierarchy. Through this, classes
inherit slots and methods from their superclasses. These inherited deseriptions may be
specialized and enriched by new definitions. This is a way of describing more or less
special UIBBs with low redundancy.

e Instances may be connected by relations in order to huild object nets. This is done
when complex aggregates ave built out of single objects or object subnets,

USIT supports the creation of nser interfaces in several ways, It provides three hasie

mechanisms: the USIT- Toolkat, the USIT- Workbeneh, and the USIT-Metasystem.

Figure 1 shows an example of a direct manipulation interface built with USIT.

3.1 USIT as a Toolkit

There is a large set of standard UIBB classes, which may be directly nsed to huild the
nser interface for an application. This is done by instantiating predefined UIBB classes and
connecting them to the application systemn. Subelasses of the UIBB classes can easily be
defined to introduce a more specialized behavior or appearance for an interaction method.

Predefined UIBBs in the initinl toolkit are textareas, icons, buttons, switches, menns, forms,
property-sheets and tables, cach with a variety of adjustable parameters concerning contents,
size, position, layout and interaction hehavior,

3.2 USIT as a Workbench

We provided a basic toolkit, called the USIT Warkbench, with elementary user interface
building blocks (EUIBBs) to creale UIBBs. This is a toolkit to build application and user
dependent user interface toolkits. Such EUIBDBs are:

Presentation-Objects: representations of visible or andible user interface particles like
texts, bitmaps, rectangles, lines, and sounds

Layouters: controllers for the screen positions of sets of display-objects (visible presentation-
objects)

Syntax-Descriptions: rule-oriented event-response deseriptions to specify the behavior of

UIBBs
Display-Areas: light-weight windows serving as output aveas for display-objects

Readers: objects reading from the keyboard, building high level tokens from low level chia-
racter streams, and performing arbitrary actions after having ereated such lokens

608

Show History
Reset History

New La f&;i
Load Layout Options

Save
Rename Minimize

New Action |[COPLAN-S
New Form ||Check

New Hole Check Options
Compile

fnning Plans
Peviormn a Plan
Showe Decngnitio

IHITIATOR
OFFICE
Kettenstellenleiter
Beschalffungrsteile "

Finanzabteilung

, Ganehm

e
nic
- erforde

VORGANG "Einfache Beschaffung®:

: BEHOETIGT Anforderung
PRODUZIERT Erledigt.

Kostenstellenleiter pruefen:
BENOETIGT Anforderung
PRODUZIERT Genehnigung.

Beschaffungsstelle vorbereiten:
BENDETIGT Genehnigung
PRODUZIERT Preise HFG_nicht_erf

orderlich
FPRODUZIERT Preise NFG_erforder]

1_pruefen

L Mittelfr
wigabe

ich.
STFIEE (o Finanrabte={ilung Etat_pruefen:
BEMOETIGT Preise HFG_erforder]
fruttimmen 1:"
L'J FRODUZIERT Mittelfreigabe. g
OFFICE zustinnen: 3

BENDETIGT Preise HFG_nicht_erf
orderlich

BEHOETIGT Hittelfreigabe
— FRODUZIERT Zustinnung.
{[Beschaffungsstelle bestellen: il

. Zuttim
mung

Figure 1: A user interface for an office procedure editor built with USIT

6509

Fonts, Bitmaps, Sounds: [unctional objects producing sereen images or aconstie output
for presentation-objects

Interaction-Objects: shells around aggregation nets of UIBBs representing special interac-
tion methodls

There are generic classes (UIBB prototype classes) that may be subelassed to build spe-
cinlized UIBBs. They serve as templates to define new interaction methods. Metaclasses
define convenient class definition schemas and therefore a kind of nser interfaee specifieation
language.

Below is an example of the definition of an interaction-object defining a complex kind of
icon. Only slight syntactic changes have been made to enhance readability. Text in bold face
denotes other UIBBs or EUIBBs. The appearance of such icons on the screen is shown in
Figure 1.

Figure 2 shows the object net for the defined applieation-specific icon.

(user-interface-class voed-netion-icon
(superclass icon)
(slots
(in-connections
[part connector))
{out-connections
(part connector))
(actor-name
[parl text-area
(size = (96 12))
(border? = 1)
(font = helvetica-8-hold)
(adjust-text-vertical = conter)
(adjnst-text-horizontal = center)))
(action-name

(part text-nren
(size = (9G 21))
{‘lfllll"]’? = I.)
(reactivity = (((nonse 1elt) o starl-editor)
((keyboard end) . tell-view-of})))
(shading-when-inactive = nil)
(mouse-feedback-when-active = blinker)
(active-mouse-blinker = cross)
(interline-spacing = 1.0)
(font = helvetica-8)
(adjust-text-vertical = center)
(adjust-text-horizontal = left)))
(layvouter
(layoul distance-cluster
(orientation = down)
(distance = 1))
{layout-sequence
(default (in-connections aclor-nmmne action-name oul-connections)))
(pop-np-part
(default net-action-mienu))
(reactivity = (((mouse left) . tell-view-of)
((mwomse right) o popaap-part)))

{view ol
(elass copln-netion))))

610

3.3 USIT as a Metasystem

Even after a user interface for an application has been instantiated, there are tools to adapt
the UIBBs according to new user or application requirements.

We call these tools the USIT Metasystem. It turns a USIT nser interface into an ad-
aptable systein for the programmer and in a more restricted way even for the end user
[Herczeg/Bocker 87). In the current implementation, the metasystem is basically shaped as
a rapid prototyping tool for the programmer to create user interface design alternatives.

The current USIT Metasystem provides tools to redefine the following properties of an
existing, running uscr interface:

o the visibility of UIBDBs relative to the visibility of their aggregating UIBBs
o the window-size of UIBBs

o the sereen layout of gronps of UIRDs
(one of the property-sheels to change the layont is shown in Figure 3)

e the syntactic behavior of UIBBs in respect to mouse and keyboard interactions

o the semantic hehavior of UIBBs in respect to the underlying application

These properties of user interfaces can be changed interactively to adapt to a special nser
or application. The USIT Metasystem has been built exclusively by means of USIT itsell and
can therefore be recursively applied to itself to change its own appearance and hehavior.,

4 CONCLUSIONS

Through the fine-grained architecture of USIT, it is easy to design interaction methods with
propertics varying smoothly in mbimy details aceording to special needs of the application or
the nser, without bheing forced to use the low level fnnetionality of & progranuning limgnage
and a graphics package. This results in an inferaction continuum rather than in isolated
interaction methods. Nevertheless, it is quite easy to predefine any of the common standard
interaction methods like icons, menus, and forms.

For the resulting user interface building blocks a kind of deep consistency is gnaranteed by
using the elementary building blocks of USIT. Additionally, this toolkit for building toolkits
allows for rapid creation of new interface methods. It may either be used to support special
application systems or generally for the development and evalnation of new user interface
methods.

USIT has been built as the kerncl of a user interface management systern (UIMS) with
other components like dialog history mechanisms [Rathke 87), user models and help systems.

coplan-action-x

pop-up-

ved-action-icon-x

layouter

distance-cluster-x

actortname
action

ontf-connections

connections

text-area-x1) display
ared

connector-x1

connector-x2

active—
maonse—
blinker

Figure 2: The object net for an iconic interaction-object

~

Horizontal Adjust Left Center] Right
Vertical Adjust Top Center] Bottom

Prohibi A Take Wind, Dut
Move Action g S s bl

Move Cluster Reorder Clusier
Reference Point b . 4
Anchor Mode Ahsolute Felative]
Special Functions Reset Update Reverse Free Anchored
Orientation Right Left ITnm U
Distance =]

Figure 3: A property-sheet to change the layout of UIBBs

611

612

ACKNOWLEDGMENTS

This work has been part of the INFORM and WISDOM projects at the Computer Science
Department of the University of Stuttgart. It was funded by the German Ministry of Research
and Technology and by the Triumph Adler AG. T would like to thank for this generous support
and the contributions of my former colleages at the University of Stuttgart during the years
1982-1988.

REFERENCES

[Goldberg 84] A. Goldberg. SMALLTALK-80, The Interactive Programming
Environment. Addison-Wesley, Reading, MA, 1984.

[Herczeg 86] M. Herczeg. Eine objektorientierte Architektur fiir wissensbasierte
Benutzerschnittstellen. Dissertation, Fakultdt Mathematik und
Informatik der Universitéit Stuttgart, Dezember 1986.

[Herczeg 87] M. Herczeg. Uniform Representation of Interaction Methods.
WISDOM-Forschungsbericht FB-INF-87-30, Institut fir Informatik,
Universitét Stuttgart, 1987.

[Herczeg 88] M. Herczeg. INFUIMS - The INFORM User Interface
Management System, WISDOM-Forschungsbericht FB-INF-88-25, Institut
fiir Informatik, Universitdt Stuttgart, 1988.

[Herczeg/Bicker 87] M. Herczeg & H.D. Bicker. DESKTOP: An Adaptable User
Interface. In: G. Salvendy (Ed.), Abridged Proceedings of the HCI
International '87. Second International Conference on Human-Computer
Interaction, p. 335, HCI International, Honolulu, Hawaii, August 1987.

[Lipkie et al. 82] D.E. Lipkie et al. Star Graphics: An Object-Oriented
Implementation. Computer Graphies, 16(3), July 1982,

[Lowgren 88] J. Lowgren. History, State and Future of User Interface
Management Systems. SIGCHT Bulletin, 20(1):32-44, July 1988.

[Rathke 87] M. Rathke. Dialogue Issues for Interactive Recovery - An
Object-Oriented Framework. In: H.-J. Bullinger, B. Shackel, & K.
Kornwachs (Eds.), Proceedings of INTERACT ‘87. IFIP Conference on
Human-Computer Interaction, pp. 745-750, IFIP, Amsterdam, 1987.

[Sibert et al. 86] J. Sibert et al. An Object-Oriented User Interface Management
System. ACM SIGGRAPH 86, 20(4):259-268, August 1986.

[Smith et al. 82] D.C. Smith et al. Designing the Star User Interface. BYTE,
7(4), April 1982.

[Symbolics 86] Symbolics Inc. Programming the User Interface, Volume A, B.
Symbolics Reference Manual 999025/999029, Symbolics, Inc., Cambridge,
MA, 1985.

