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ABSTRACT  

Instantaneous consumption displays (ICDs) can be used as central information source to 

perceive the energy efficiency of their manoeuvre-level driving. A key question is whether 

drivers who use ICDs can accurately derive efficiency value differences across driving 

strategies based on this information presented by the ICD. There is reason to assume that 

drivers’ consumption judgements may be biased, similar to related phenomena like the time-

saving bias. Therefore, the aim of the present research was to examine drivers’ accuracy in 

deriving average consumption from dynamic ICD sequences. Participants viewed videos of a 

schematic ICD in a controlled experiment where the maximum instantaneous consumption 

systematically varied over time. Participants’ (N = 55) overestimated the average consumption 

values. The empirical ranking of the sequences also significantly differed from the correct 

efficiency ranks. The current study incorporated multilevel modelling due to the nested 

structure of the data. The estimation difference was greater with higher peak height and shorter 

peak duration. The effect of peak height on estimation difference weakens with longer peak 

duration. In sum, the results indicate that ICDs can create biased perceptions of energy 

efficiency. Knowledge and affinity for technology interaction appear to impact estimation 

biases, whereas experience with consumption displays seems irrelevant. Further studies 

should test less biased interface designs such as manoeuvre-based aggregation or fading-

trace approaches. Moreover, studies are needed that enable modelling of the effects of more 

natural temporal-spatial visual attention distribution (e.g., via an occlusion paradigm applied in 

a driving simulator setting). 

 

Keywords: Biased perception, instantaneous consumption displays, dynamic data 

visualisation, energy efficiency, electric vehicle 

  



2 

 

1 INTRODUCTION 

Drivers’ are a critical factor regarding whether a vehicle’s energy efficiency potential 

can be optimized in real-world usage (Barkenbus, 2010). Electric drivetrains in particular are 

highly susceptible to variations in everyday operational driving behaviour (Sivak & Schoettle, 

2012). Drivers continuously adapt their behavior to balance different driving goals (Dogan, 

Steg, & Delhomme, 2011). From an analytical standpoint, one can assume that, at the most 

basic level, drivers want to reach the destination safely, on time, without excessive cognitive 

workload or stress, without significant financial waste (e.g., speeding tickets, vehicle damage, 

or excessive fuel/energy consumption), and without disturbing other road users or passengers 

with the resulting driving style. While avoiding crashes are assumed to be the primary goal, a 

secondary goal might be to drive as energy-efficient as possible for environmental (e.g., 

reducing personal CO2 footprint) or financial considerations (e.g., because of increasing 

energy costs).  

Drivers’ key challenge in controlling their operational eco-driving behaviour to maximize 

energy efficiency is to determine which driving behaviour is the most energy-efficient at 

different times and then control the vehicle accordingly. Control-theoretical models of driver 

behaviour assume that continuous monitoring of goal-oriented behaviour is required to 

successfully manage the driving task (Fuller, 2005; Summala, 2007). This also applies to the 

driving objective of increasing energy efficiency (Franke, Arend, McIlroy, & Stanton, 2016). 

The essential basis for this dynamic control process is the perception of relevant environment 

variables, and, as the perceptibility of energy efficiency via visual or noise cues from the 

environment is limited, energy displays play a key role for this first step in controlling of energy-

related driving behaviour. Based on perception of the energy-related facets while driving via 

consumption displays, the driving behaviour has to adjust within each driving manoeuvre. 

Indeed, 52% of interviewed hybrid electric vehicle drivers (Franke, Arend, & Stanton, 2017) 

monitor consumption displays to derive the energy efficiency level from different driving 

strategies.  
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Generally, consumption displays can convey abstract or concrete feedback. In the 

context of action regulation, these different types of feedback can be attributed to various 

aspects of the adaptive control of eco-driving selection (see Franke et al., 2016). Given the 

present research focuses on acquiring eco-driving knowledge and identifying applicable 

energy-efficient strategies, concrete numeric feedback (e.g. instantaneous consumption 

displays) is the central aspect. It aims to teach individuals how to accelerate efficiently 

(manoeuvre-level) because it is constantly obvious which behaviour promotes eco-driving 

(Dahlinger, Wortmann, Ryder, & Gahr, 2018). In contrast, abstract feedback uses rather 

unclear, symbolic representations of aggregated information to make the reason salient why 

someone should drive energy efficiently (Dahlinger et al., 2018). Instantaneous consumption 

displays (ICDs), in particular, represent the central, immediate and salient information source 

or system variable within the framework of the monitoring process. By this process, the driver 

can determine energy efficiency of individual driving manoeuvres. The most basic driving 

manoeuvre in this respect is speed control through accelerations. Compared to other displays, 

ICDs provide a large bandwidth of information, a high salience, and a high value due to 

immediacy. Only ICDs represent the actual acceleration and situation-related influences, while 

a further aggregation (e.g., average or total consumption) also typically includes manoeuvre-

irrelevant information.  

However, whether the driver can ultimately derive the situation-specific influence of his 

or her driving style through ICDs depends on the accuracy of the subjective temporal 

integration of the consumption parameter presented. Of course, the ultimate objective measure 

of energy efficiency is a manoeuvre-based average consumption for the particular 

accelerations. Therefore the key question is how the driver perceives the magnitude dynamics 

of an ICD and how accurate the aggregated estimates of energy efficiency are based on these 

dynamics. Surprisingly, little research exists regarding dynamic magnitude perception in the 

context of eco-driving with a few exceptions in other driving contexts such as speed perception 

(e.g., Svenson, 1976; Svenson & Salo, 2010). While a snapshot is sufficient to check if a speed 



4 

 

limit is adhered to, the dynamic course must be taken into account concerning consumption 

regulation. Therefore, a complex research agenda is needed to better understand how 

consumption displays can optimally support the perception of energy-efficient driving styles. 

Thus, a controlled experiment is needed initially to identify perceptual phenomena or biases 

that an appropriate display design must address. To investigate the possible influence of 

dynamic components (e.g. magnitude and time), a study design with sufficient variation of 

these components is required. The resulting study design must yield sufficient power to detect 

small to large effects in a multilevel approach. Hence, the initial experiment needs to reflect a 

kind of ideal state (continuous view) as a baseline, which is comparable to driving on level 2 

(driving autonomously with enough time to look at the display). Of course, drivers cannot 

constantly focus on consumption displays and always perceive them peripherally. Further 

experiments must address how the estimation error systematically increases when different 

display variants are embedded in an occlusion paradigm (Gelau, Henning, & Krems, 2009; 

Gelau & Krems, 2004), for example. This follow-up study should then include a reduced stimuli 

set with less dynamic component variation but more occlusion parameters and displays. As a 

next step, displays developed on this basis should be compared in a driving simulator study to 

investigate the effects on energy-efficient driving behavior. The final goal should be to test the 

resulting display(s) in the field. 

Consequently, by first understanding the possibly biased perception of ICDs, we can 

identify possible approaches for display design and finally better support drivers and their 

correct development of mental models (see also Pampel, Jamson, Hibberd, & Barnard, 2015). 

As drivers’ mental models of energy efficient strategies like accelerations differ (e.g., Franke 

et al., 2016), it is likely that drivers’ perception of energy dynamics based on inter-individual 

difference variables such as knowledge, experience and general cognitive and behavioural 

styles in interaction with technology differs as well.  

Hence, the objectives of the present research are to examine (1) whether drivers can 

correctly rank the magnitude dynamics in ICDs with regard to energy efficiency, (2) to what 
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extent distortions exist in deriving the manoeuvre-based average consumption from different 

ICD dynamics, and (3) whether inter-individual difference variables play a role regarding the 

derivations’ quality. 

2 BACKGROUND 

2.1 Biased magnitude perception in driving 

To accurately derive an overall energy efficiency value for a specific driving manoeuvre 

through monitoring ICDs, a completely rational evaluation would require the integration of 

instantaneous consumption over a given time. All instantaneous consumption values must be 

totalled only over acceleration time (manoeuvre-based total consumption) and then divided by 

the number of values (manoeuvre-based average consumption). It is certainly more likely that 

human judgements in everyday dynamic environments such as driving will rely more on 

heuristics (i.e., bounded rationality; Simon, 1957, 1982). Since people have a limited capacity 

to evaluate and process available information and usually rely on simplifying heuristics when 

making intuitive judgements, everyday judgements are often biased in various ways (e.g., 

Tversky & Kahneman, 1973). 

One exemplary heuristic in the broader context of magnitude perception is the tendency 

to automatically assume a linear relationship in various situations when detecting a functional 

relationship between different values is required. However, this effect can be mediated for 

example by additional graphic material (Van Dooren, De Bock, Janssens, & Verschaffel, 2008), 

previous experience with non-linear relationships (Christandl & Fetchenhauer, 2009; Keren, 

1983) or changes in displayed units (Eriksson, Patten, Svenson, & Eriksson, 2015; Larrick & 

Soll, 2008; Peer & Gamliel, 2013). As an example from a driving context, people adopt linear 

strategies as opposed to considering the curvilinear relationship between speed and travel 

time (e.g., Peer & Gamliel, 2012, 2013; Svenson, 2008, 2009). Specifically, this means that 

time saved is underestimated when increasing speed from a relatively low starting point. At a 
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relatively high speed, however, the time saved by a speed increase is overestimated. Similarly, 

people often assume that the amount of gas consumed relative to the fuel efficiency, when 

expressed as miles per gallon (MPG), will decrease as a linear function (Larrick & Soll, 2008). 

However, the actual relationship between the amount of gas consumed and a vehicle’s MPG 

value is curvilinear. This may cause undervaluation of small MPG improvements and 

overvaluation of higher MPG improvements. Hence, there is a pattern that judgements based 

on non-linear relationships and on values with different magnitudes are simplified and biased. 

Nevertheless, studies examining the integration of dynamic magnitude information over 

time would be more relevant for the objective of the present research. Unfortunately, to the 

best of the authors’ knowledge, no studies currently exist that examine such dynamics in the 

context of consumption displays. A first line of research in this direction addresses temporal 

integration of magnitude information in speed perception. Here, the perception of a vehicle’s 

average speed seems dependant on speed magnitude (Svenson, 1976). Furthermore, a 

higher speed is given too much weight when judging average speed with different 

combinations of original and reduced speeds over a certain distance (Svenson & Salo, 2010). 

However these studies used static scenarios with written descriptions of scenarios/stimuli 

instead of letting participants experience dynamic situations. Considering the biased 

calculation of average speeds (Svenson, 1976; Svenson & Salo, 2010), the displayed amount 

and duration of consumption may also play a role when judging the average over a given time 

in a dynamic scenario. 

As in many domains of human performance and cognitive biases (e.g., Carnevale, 

Inbar, & Lerner, 2011; Hoppe & Kusterer, 2011; Ingre, Akerstedt, Peters, Anund, & Kecklund, 

2006; Tett, Jackson, & Rothstein, 1991) it can further be assumed that considerable inter-

individual differences regarding magnitude perception will exist. Unfortunately, inconsistencies 

exist in the research as some evidence supports (Eriksson & Svenson, 2012) an influence of 

inter-individual differences in (magnitude) perception biases in driving whereas some does not 

(Peer & Solomon, 2012; Svenson, 2009). Eriksson and Svenson (2012) asked students and 
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truck drivers to intuitively estimate the average fuel consumption (l/100km) when increasing 

(70, 80, 90, 100, 110 and 120 km/h) or decreasing (110, 100, 90, 80, 70 and 60 km/h) speed 

(one speed change per problem). Participants also received the average consumption of the 

particular reference speed (60 km/h or 120 km/h). Truck drivers underestimated the fuel saving 

effect of decreasing speeds. While their judgments regarding increasing speeds were more 

accurate, students overestimated the fuel consumption. Regardless, changing speeds were 

presented statically and the influence of acceleration on energy consumption was not 

considered. Nevertheless, it can be assumed that specific experience and knowledge could 

influence accurate perception of consumption. However, Peer and Solomon (2012) showed 

different results: Taxi drivers were just as biased as non-professional drivers regarding speed 

judgements, journey time and time saving. Furthermore, education and training (physics, 

engineering) also do not seem to reduce bias regarding time savings, accident risk, and the 

speed while braking when hitting an object (Svenson, 2009). In sum, inter-individual 

differences may influence several simplified and biased judgements in the context of driving 

(e.g. speed, consumption in static scenarios, travel time).  

2.2 Graphical magnitude perception 

Although little research on magnitude perception in driving exists, there is ample 

research in psychophysics and graphical perception regarding static data visualisation (e.g., 

Cleveland & McGill, 1984; Falmagne, 1971; Hollands & Spence, 1992; Stevens, 1957). For 

example, research has shown that height differences are more likely detected in “framed 

rectangles” compared to when non-framed “bars” are used for visualisation (Weber‘s law; Baird 

& Noma, 1978; Cleveland & McGill, 1984). Moreover, change can be perceived faster and 

more accurately in bar and line charts than in pie charts or tiered bar graphs (Hollands & 

Spence, 1992). However, since ICDs are dynamic rather than static visualisations of data, 

these findings are not applicable to the perception of ICDs.  

To the best of the authors’ knowledge, there seems to be little research regarding 

animated (i.e. dynamic) data visualisation comparable to static data visualisation. Wu, Jiang, 
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Xu, and Nandi (2016) first examined perceptual accuracy in animated data visualisations and 

emphasized the need for further controlled studies. They showed that the maximum height of 

an animated bar (peak height) improved estimation accuracy about the time position of the 

peak and rate of change of the animation (varying slope). However, higher peaks seemed to 

increase bar height estimation error (Wu et al., 2016). Previous research on animated data 

visualisation have focused on different topics such as possible benefits provided by animated 

data (e.g., Heer & Robertson, 2007), different animation styles (e.g., Merz, Tuch, & Opwis, 

2016), animated graphics to teach complex systems (B. Tversky, Morrison, & Betrancourt, 

2002) or animated images (Gonzalez, 1996). These topics have been studied in various 

contexts such as trends (Robertson, Fernandez, Fisher, Lee, & Stasko, 2008), influence on 

decision making (Gonzalez, 1996) and user experience (Merz et al., 2016) or transitions of 

static data (Heer & Robertson, 2007). For example, Herr and Robertson (2007) showed that 

animated transitions of static data visualizations enhance graphical change perception. Thus, 

the dynamic magnitude perception seems biased. However, the concrete transfer is lacking in 

the context of driving (or rather energy perception). 

3 PRESENT RESEARCH 

The present research is part of a more complex research agenda to better understand 

how the display can optimally support the perception of energy-efficient driving styles. The 

objective was to examine how varying ICD characteristics influence the derivation of 

manoeuvre-based average consumption as measure for energy efficiency. In this context, the 

perception accuracy (estimation difference of average consumption) is considered. Given the 

limited amount of data and considering the previous research approach regarding graphical 

perception in animated data visualizations (see Wu et al., 2016), the present research was 

largely exploratory. The following research questions were examined: 

RQ1 – Can drivers rank the various dynamics of a schematic ICD in the correct order 

of energy efficiency for acceleration manoeuvres? 
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RQ2 – Do any biases exist in the perception accuracy of energy efficiency based on 

the dynamic magnitude characteristics?  

RQ3 – Do inter-individual difference variables impact the perception accuracy of energy 

efficiency? 

Because it is atypical in driving to accurately estimate the exact manoeuvre-based 

average consumption when comparing different driving manoeuvres, RQ1 asks for the correct 

ranking order. RQ2 addresses the possible transfer of previous findings regarding judgement 

biases in the driving context (see section 2.1) on the perception of consumption. As people 

showed a peak-height-bias in animated bar charts (Wu et al., 2016) and gave faster speeds 

too much weight (Svenson, 1976; Svenson & Salo, 2010), a rational assumption is that the 

peak height influences the estimation difference. In addition, the peak duration at higher peaks 

is lower to achieve a certain average consumption. Therefore, it could be assumed that an 

effect of peak duration and an interaction between peak height and peak duration exists. 

In RQ3, three inter-individual variables that presumably impact the perception of and 

interaction with technology are considered: general knowledge, concrete practical experience 

and stable interaction styles (i.e. personality). Since the influence of experience on judgements 

of average consumption is unclear (Christandl & Fetchenhauer, 2009; Eriksson & Svenson, 

2012; Svenson, 1976; Svenson & Salo, 2010), a direct and specific facet is considered with 

respect to system interaction: experience with consumption displays. Technical-mathematical 

knowledge is also considered a variable since system knowledge influences the perceived 

strategy effectiveness (i.e. driving strategy, Franke et al., 2016) and is acquired with system 

interaction (Franke, Arend, & Stanton, 2017). Furthermore, it is particularly important if 

someone is a novice (see Rasmussen, 1983) regarding energy efficient driving. This is true for 

novice drivers as well as people new to certain types (e.g. electric vehicles). Technical-

mathematical knowledge is considered a potential factor because it could promote the 

comprehension of data aggregation over time. This comprehension is essential in estimating 

average consumption. Besides experience and knowledge, the affinity for technology 
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interaction (ATI) scale serves as an exemplary facet of general cognitive and behavioural 

styles in technology interaction. The scale is developed based on a review of literature between 

1982 and 2016 on individual personality traits that influence interacting with new technical 

systems (Attig, Wessel, & Franke, 2017). In the broader context of biases regarding non-linear 

relationships, need for cognition (Cacioppo & Petty, 1982) and therefore a stronger motivation 

to solve estimation tasks for example seem to positively influence the underestimation of 

exponential growth (Christandl & Fetchenhauer, 2009). A high ATI as a dimension of need for 

cognition and therefore more actively exploring systems (in this case, consumption displays) 

may lead to better estimations based on information aggregation.  

4 METHOD 

4.1 Participants 

A total of 58 participants were recruited via a psychology student e-mail distribution list 

and via social media. Three participants were excluded because they mistook the ICD for a 

display of speed. Participants in the resulting sample (N = 55) were an average age of 

M = 22.55 years (SD = 3.84). Within the sample, 86% were female and 87% were psychology 

students. Their average driving experience was 4.68 years (SD = 3.36 years) and 52.98 km 

(SD = 97.21 km) per week. 

4.2 Stimulus material 

To examine the perception of ICDs during acceleration, schematic sequences of 

energy consumption during periods of acceleration were created. The acceleration’s basic 

elements include an initial consumption rate at a constant start speed, an end consumption 

rate at a constant target speed and a sharp increase of consumption rate depending on 

acceleration intensity and speed. Despite the schematic construction of the sequences, 

considerable efforts were invested to create similar energy dynamics to real-world 

consumption in electric vehicles. Specifically, we used Galvin's (2017) work to define realistic 
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values. According to Galvin (2017), the consumption of a typical compact electric vehicle (i.e. 

Kia Soul Electric 2015) is 11.1 kWh/100km at a constant speed of 20km/h, 13.4 kWh/100km 

at a constant speed of 80 km/h, and 73 kWh/100km within a typical acceleration (1.35 m/s²-

1.4 m/s² within a speed range of around 50-80km/h; Galvin, 2017). Hence, the values’ ratio 

used in the schematic sequences created for the present experiment is comparable to real-life 

energy consumption of battery electric vehicles.  

Twenty-five sequences lasting 5 seconds and with a temporal resolution of 100 Hz were 

created, forming five groups of different average consumption values (32, 34, 36, 38, 40) with 

five different peak values each (100, 90, 80, 70, 60). The consumption unit was fictional to 

enable broader generalisation. All sequences began with the same starting consumption value 

(6) and ended on the same value as well (10). Peaks always began at 1.1 seconds and 

continued for the needed duration to achieve the targeted average consumption of the 

sequence given the defined peak height. Hence, the higher the peak, the shorter the sequence 

of the peak had to be to result in the same average consumption. To increase realism and to 

ensure a comparable rate of change, a Lowess smoothing (Cleveland, 1979) with a smoother 

span of f = .15 was conducted for all sequences. Furthermore, noise (±0 or ±0.5 with a 

respective probability of 50%) was added to the constant consumption phases to underline the 

ongoing dynamic process and increase the simulation authenticity (see Figure 1). All 

sequences varied in peak duration (see Table 1). The peak durations include the display time 

of the respective average peak value (±0.5). 
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Figure 1. Example of one smoothed sequence after adding noise (average peak height = 80, 
average consumption = 36). 

 

Table 1.  
Sequence design 

Sequence 
ID 

Average 
consumption 

Average 
peak 
height 

Peak 
duration  
(in s) * 

22 32 60 1.75 
18 32 70 1.35 
14 32 80 1.08 
10 32 90 0.86 
6 32 100 0.69 

23 34 60 1.94 
19 34 70 1.52 
15 34 80 1.21 
11 34 90 0.99 
7 34 100 0.80 

5 36 60 2.15 
4 36 70 1.69 
3 36 80 1.36 
2 36 90 1.12 
1 36 100 0.91 

24 38 60 2.35 
20 38 70 1.86 
16 38 80 1.51 
12 38 90 1.25 
8 38 100 1.03 

25 40 60 2.55 
21 40 70 2.03 
17 40 80 1.65 
13 40 90 1.37 
9 40 100 1.14 

Notes. *peak duration refers to the smoothed 
sequences and an average peak (±0.5) 
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Figure 2. Video sections for sequence ID 3 with 0.01 seconds, 1.60 seconds and 4.99 seconds 
(see https://youtu.be/SDsMO85Ejwg for the animated ICDs). 

 

RStudio and ffmpeg were used to create the schematic ICD videos in the form of an 

animated bar plot (see Figure 2). The bar plot’s frame size in the presented videos on 

LimeSurvey was 342 x 114 pixel (height x width). Just prior to the actual sequence, a fixation 

cross was displayed in the middle of the video screen for 1.5 seconds. After the sequence 

occurred, a white screen was shown. 

4.3 Procedure 

The experiment was conducted online with LimeSurvey in an uncontrolled setup. As a 

general scenario, participants were asked to imagine a traffic situation in which they accelerate 

the vehicle after the end of a previous speed limit. An example sequence including the average 

parameters of all sequences (average consumption = 36, peak = 80) was presented to explain 

the dynamics of consumption (start consumption level, maximum consumption level, end 

consumption level) and to familiarize participants with the ICD videos. The participants were 

told that the consumption unit was fictional. This was due to avoid comparisons (e.g. to a more 

familiar combustion engine) and irritations through deviations from real and more familiar 

sequences. 
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The participants were instructed to estimate the average consumption level for each 

sequence: “Please estimate the average consumption level on a scale from 0 to 100 

consumption units as accurately as possible”. Afterwards, 2 blocks of 25 sequences each were 

presented, each block starting with the same first sequence (ID = 1). The further 24 sequences 

were randomized within the blocks.  

After completing the experimental trials, participants answered an open-ended question 

in the following post-experimental questionnaire to determine which cues they based their 

estimations on and if they understood the task correctly. Furthermore, participants gave socio-

demographic information, their experience with consumption displays, their technical-

mathematical knowledge and their ATI. Participation in the entire online study lasted an 

average of 30 minutes. 

4.4 Scales and measures 

According to common practice (e.g., Cripps, 2017), Cronbach’s alpha was interpreted 

as poor (.5 ≤ α < .6), questionable (.6 ≤ α < .7), acceptable (.7 ≤ α < .8), good (.8 ≤ α < .9), or 

excellent (≥ .9) for all measures. Scales in the post-experimental questionnaire contained a 6-

point Likert scale ranging from 1 = " completely disagree” to 6 = "completely agree", if not 

stated otherwise. 

4.4.1 Estimation difference 

For the dependent variable, the difference between the participants’ empirical 

estimates and the correct average consumption levels was calculated as a measure of 

perception accuracy/estimation error (0 = perfect estimate, >0 overestimation, <0 

underestimation of average consumption levels). Test-retest reliability of the mean estimation 

difference between block 1 and 2 was excellent (α = .97). Even when considering individual 

sequences, test-retest reliabilities were all acceptable (α > .7) with an average α of .89. The 

mean estimation difference was M = 8.51 (SD = 14.48, range = 93). 

 



15 

 

4.4.2 Experience with consumption displays 

Experience with consumption displays was assessed via eight items (see Table A1) 

focusing on attention directed at displays, helpfulness, and specific as well as general 

relevance of displays to achieve fuel (i.e. energy and gas) efficiency. The reliability of the 

means of all item values was excellent (α = .92). The average experience with consumption 

displays was M = 3.85 (SD = 1.05, range = 4.75), indicating that the participants were neither 

very experienced nor very unexperienced. Therefore, the conditions were optimal, as 

participants were not exclusively expert or novice (i.e. variance of experience is not limited). 

4.4.3 Affinity for technology interaction 

The ATI scale (Franke et al., 2018) consists of nine items. The ATI score is computed 

as the mean score of all nine items (Items 3, 6, 8 reversed). The internal consistency of the 

ATI scale was excellent (α = .90). The average ATI in the sample was M = 3.21 (SD = 1, range 

= 4.22). 

4.4.4 Technical and mathematical knowledge 

The participant’s self-rated technical and mathematical knowledge was assessed by 

five items (see Table A1). Internal consistency of the knowledge scale was acceptable 

(α = .77). The average score of knowledge was M = 2.74 (SD = 0.97, range = 4.83). 

5 RESULTS 

The significance level was set to α = .05 for all analyses. Based on Arend and Schäfer 

(2018), we estimated that the present study design yielded sufficient power (i.e., >= .80; cf. 

Cohen, 1988) to detect small to medium L1 direct effects in a multilevel approach. Similarly, 

we assumed medium to large effects for the L2 direct and cross-level interaction effects.  
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5.1 RQ1 - Can drivers rank the various dynamics of a schematic ICD in the 

correct order of energy efficiency for acceleration manoeuvres? 

Estimation differences were not normally distributed as assessed by the Shapiro-Wilk-

Test (p < .05). Therefore, a Kendall rank correlation between the empirical and the correct 

ranks were computed for each block to test RQ1. Significant correlations were non-existent in 

both block 1 and block 2 (rτ = .16, p = .293 and rτ = .13, p = .389). Thus, it seems participants 

did not correctly order the ICD scenarios.  

In addition, open-ended comments from 15 participants indicate that heuristics were 

used without accounting for the dynamic process (e.g., “Comparison of the starting 

consumption value with the difference of the consumption value during acceleration”, “Smallest 

and highest value, calculating the mean”, “Half of the consumption value during acceleration 

(when the bar moved up)”). Although 35 participants attempted to account for time (e.g. 

“Smallest and highest value, calculating the mean“), it seems they failed to consider the 

dynamic rise (e.g. “highest level duration, lowest level duration, highest level value, lowest 

level value”). One participant mentioned considering primarily the value (“Value (primary) and 

duration“). Another mentioned changing his strategy over time: first taking value and duration 

into account, then using a simplifying heuristic (“At first, I paid attention to duration and amount 

of consumption. After some videos, […] I divided the highest value in half […]”). Comments 

from three participants could not be clearly assigned to a category. The mentioned heuristic 

calculations (e.g., peak/2, (minimum consumption value + peak)/2, (start consumption value + 

end consumption value + peak)/2) result in a different ranking than the correct ranking. We 

computed a Kendall rank correlation between the empirical and heuristic ranks for each block, 

showing significance in both block 1 and block 2 (rτ = .91, p < .001). 

In sum, although the empirical ranking does not reflect the correct ranking, it better fits 

a heuristic ranking. A possible conclusion is that ICDs do not allow for correct recognition of 

the optimal strategy regarding a specific driving manoeuvre. 
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5.2 RQ2 - Do any biases exist in the perception accuracy of energy efficiency 

based on the dynamic magnitude characteristics? 

To test RQ2, the mean estimation difference was compared to perfect estimation 

(estimation difference = 0). Prior testing determined whether a difference between the two 

blocks existed because of possible variations due to motivational changes, learning effects or 

other reasons. A Wilcoxon signed-rank test indicated a significantly smaller mean estimation 

difference in block 1 (Mdn = 3.76) than in block 2 (Mdn = 5.44), W = 1034.00, z = 2.21, 

p = .027, with a small effect size (r = .21; Rosenthal, 1994). Therefore the participants’ 

estimation was more accurate in block 1 than in block 2. Furthermore, a one-sample Wilcoxon 

signed-rank test showed that the mean estimation differences for block 1 and block 2 were 

significantly higher than 0 (W = 1425.50, z = 5.49 and W = 1368.00, z = 5.01, p < .001). The 

effect sizes were r = .52 and r = .48 respectively, corresponding to large and medium effects 

(Rosenthal, 1994). This shows that the average consumption was overestimated in both 

blocks. 

Following Leckie (2013) as well as Snijders and Bosker (2012), a multilevel model was 

created to examine possible effects (peak height, peak duration, interaction between peak 

height and peak duration). Thus far, multilevel models have seldom been employed in traffic 

psychology, human factors and ergonomics with a few exceptions. A modest number of 

published articles between 2013 and November 2019 incorporate multilevel models (search 

for “multilevel model” and screen relevant articles) when compared to the number of all 

published articles in the particular journal during this time period: < 1.42 % in “Ergonomics” 

(e.g., Jung, Kaß, Schramm, & Zapf, 2017), “Applied Ergonomics” (e.g., Hiemstra-van Mastrigt, 

Kamp, van Veen, Vink, & Bosch, 2015), “Computers in Human Behavior” (e.g., Kushlev, 

Hunter, Proulx, Pressman, & Dunn, 2019) and in “Transportation Research Part F: Traffic 

Psychology and Behaviour” (e.g., Molnar et al., 2018). The central advantage of multilevel 

approaches is that they consider hierarchical or clustered structures in the data, thereby 

avoiding underestimation of standard errors of regression coefficients in contrast to multiple 
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regression, for example. Ignoring the multilevel data structure may also Iead to employing 

statistical procedures with violated independence assumptions (e.g., dependent observations 

from the same individual) and unfounded conclusions (for further details, see Snijders & 

Bosker, 2012). 

With a three-level model, the clustered data structure, comprising participants at the 

highest level (L3), peak height groups at the medium level (L2) and measures at the lowest 

level (L1) was used to analyse the data. There are 55 participants at L3, (5 peaks x 55 

participants =) 275 peak height groups at L2 and (5 observations per peak height group x 2 

blocks x 275 peak height groups =) 2750 measures at L1.  

First, it is important to test if the empty three-level model fits the data significantly better 

than simpler two-level models and the single-level model (Leckie, 2013). A likelihood ratio test 

showed that the empty three-level model M0 (see table 2) was preferred to its single-level 

counterpart L0 (𝜒2
2 = 3959.36, p < .001). To test the null hypothesis that no effects of peak 

height group exist, M0 was compared to the simpler two-level measures-within-participants 

model T1. M0 was preferred to T1 (𝜒1
2 = 1719.17, p < .001).  

Table 2.  
Models 

Model Equation 

L0 𝑌𝑖 = 𝛽0 + 𝑒𝑖  
T1 𝑌𝑖𝑗 = 𝛽0𝑗 + 𝑉0𝑗 + 𝑒𝑖𝑗  

T2 𝑌𝑖𝑝 = 𝛽0𝑝 + 𝑈0𝑝 + 𝑒𝑖𝑝  

M0 𝑌𝑖𝑝𝑗 = 𝛽0𝑝𝑗 + 𝑉0𝑝𝑗 + 𝑈0𝑝𝑗 + 𝑒𝑖𝑝𝑗  

 
M1 L1: 𝑌𝑖𝑝𝑗 = 𝛼0𝑗𝑘 +  𝛼1𝑗𝑘 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 +  𝑒𝑖𝑝𝑗   

 
L2: 𝛼0𝑗𝑘 =  𝛾00𝑗 +  𝛾01𝑗 𝑝𝑒𝑎𝑘 + 𝑈0𝑝𝑗 

      𝛼1𝑗𝑘 =  𝛾10𝑗 +  𝑈1𝑝𝑗 

 
L3: 𝛾00𝑗 =  𝛽000 + 𝑉00𝑗 + 𝛽110 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 × 𝑝𝑒𝑎𝑘 

      𝛾01𝑗 =  𝛽010 + 𝑉01𝑗 

      𝛾10𝑗 = 𝛽100 + 𝑉10𝑗  

 
𝑌𝑖𝑝𝑗 = 𝛾000 +  𝛽100 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 + 𝛽010 𝑝𝑒𝑎𝑘 + 𝛽110 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 × 𝑝𝑒𝑎𝑘 + 𝑉01𝑗 𝑝𝑒𝑎𝑘 +

 𝑉10𝑗 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 +  𝑈1𝑝𝑗 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 + 𝑉00𝑗 +  𝑈0𝑝𝑗 + 𝑒𝑖𝑝𝑗  
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To test the null hypothesis that there are no participant effects, M0 was compared to 

the simpler two-level measures-within-peak-height-group model T2. M0 was also preferred to 

T2 (𝜒1
2 = 3452.39, p < .001). A multilevel analysis approach was clearly favoured over a single-

level (i.e. simple regression analysis) and two-level approach. 

The empty three-level model reveals the raw within-group and between-group 

variances, which are useful as a general description and a starting point for further model fitting 

(Snijders & Bosker, 2012). Calculating the variance partition coefficients and the intraclass 

correlation helps to determine whether a multilevel model is necessary and to show the degree 

of data clustering (Leckie, 2013). A total of 54.5% of the variation in estimation difference lay 

between participants, 28.7% lay within participants between the different peak height groups, 

while the remaining 16.8% lay within peak groups between the estimation differences (see 

variance partition coefficient in Table 3). Thus, there was substantial variation between 

participants and a variation between peak height groups. Finally, the participants ICC is .545, 

while the peak height group ICC is .832. Although ICC values are usually small in practice 

(Musca et al., 2011), rather large ICC values are expected in a repeated measures design 

(Arend & Schäfer, 2018). Overall, an ICC of .50 can be considered large (Arend & Schäfer, 

2018). As even very small ICCs can dramatically influence Type-I error rate in standard one-

level analyses for independent data, a multilevel approach is favoured, where the variation 

between groups is part of the model (Musca et al., 2011). 

Table 3.  
VPC and ICC statistics for the 
three-level variance components 
model for estimation difference 
measures 

 VPC ICC 

Participants .545 .545 
Peak height 
group 

.287 .832 

Measures .168  

Notes. VPC = variance partition 
coefficient, ICC = intraclass 
correlation coefficient. 
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The predictor variables (peak height, peak duration), their cross-level interaction as well 

as their random slopes were added stepwise to model M1 (see Table 2), corresponding to the 

respective likelihood ratio tests. At L2, there were random slopes for peak height and duration, 

whereas at L3, they only existed for peak height. M1 showed a significantly better fit to the 

data than the empty three-level model (𝜒10
2  = 816.10, p < .001, R2

marginal = .19 (proportion of 

variance explained by the fixed factors alone), R2
conditional = .86 (proportion of variance explained 

by both fixed and random factors)). The R2 values were computed according to Nakagawa and 

Schielzeth (2013). The fixed effects of peak height ( = 0.39, SE = 0.04) and peak duration 

( = -9.92, SE = 0.73) as well as the interaction ( = -0.18, SE = 0.02; see figure 3) were 

significant (t(137.11) = 8.82, t(64.95) = -13.57 and t(614.82) = -8.12, p < .001). The estimation 

difference is larger with greater peak height and shorter peak duration. The effect of peak 

height on estimation difference becomes weaker with longer peak duration. In sum, perception 

accuracy of energy efficiency is biased based on the dynamic magnitude characteristics (peak 

height and peak duration). 

 

Figure 3. Cross-level interaction between peak duration and peak height. Standard errors are 
offset. 
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5.3 RQ3 - Do inter-individual difference variables impact perception accuracy 

of energy efficiency? 

To identify potential inter-individual influencing factors in an exploratory manner, the 

cross-level-interactions of each person-level predictor with peak height and peak duration were 

considered individually in 9 total models (see Table A2 for the detailed results). To avoid 

erroneous interpretations, the fixed effects were also included in each case regardless of 

significance (Snijders & Bosker, 2012). The cross-level-interactions between ATI and the L2 

predictor peak height as well as the L1 predictor peak duration were significant (p < .05). This 

means that the effect of peak height and peak duration on estimation difference become 

weaker with higher ATI. Additionally, the interaction between peak height, peak duration and 

ATI was significant (p < .05). ATI influences the peak-height-bias (greater estimation difference 

with greater peak heights) which decreases with higher peak duration (see Figure 4). With high 

ATI, the effect of peak height on the estimation difference decreases faster with increasing 

peak duration when compared to a small ATI. Further, it can be surmised that there is a peak-

height-bias towards underestimation depending on peak duration (i.e. acceleration duration) 

after reaching a certain peak duration (greater underestimation with taller peak heights).  

 

Figure 4. Cross-level interaction between peak duration and peak height facetted by ATI 
(M ± SD = 3.21 ± 1). Standard errors are offset. 
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Figure 5. Cross-level interaction between peak duration and knowledge. Standard errors are 
offset. 

 

In addition to the significant effect of ATI, the interaction between knowledge and peak 

duration was significant (p < .05, see Figure 5). The effect of peak duration on estimation 

difference is weaker with enhanced knowledge. Overall, knowledge and ATI seem to impact 

estimation biases, whereas experience with consumption displays seem irrelevant. 

6 DISCUSSION 

6.1 Summary of results and theoretical implications 

The objective of the present study was to examine whether drivers can accurately 

determine efficiency differences of accelerations based on perceiving dynamic ICD 

sequences. People tend to overestimate the average consumption level when the maximum 

consumption value is higher and is displayed for less time (i.e. the shorter the acceleration).  

 The overestimation is comparable to judgements of average speed that depend on 

speed amount (Svenson, 1976; Svenson & Salo, 2010). The present results also expand Wu 

et al.’s (2016) findings regarding the lack of accuracy in estimating higher peaks. Thus, drivers 

cannot correctly integrate information on time and magnitude into their average consumption 
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judgements and therefore into their perception of energy efficient driving strategies. A possible 

explanation for the peak-height-bias is that the higher values could be more easily available 

(availability heuristic; A. Tversky & Kahneman, 1973). In addition, open-ended comments from 

participants indicate that they incorporated simplifying heuristics without accounting for the 

dynamic process (e.g., adding peak and minimum weight divided by 2) or without considering 

the dynamic rise. The mentioned heuristic calculations (e.g., peak/2, (minimum consumption 

value + peak)/2, (start consumption value + end consumption value + peak)/2) result in a 

ranking that differs from the correct ranking and significantly correlates with the empirical 

ranking. The heuristics also fit a real driving situation well, in which only “snapshots” of the 

dynamic process are perceived. 

Furthermore, the overestimation was higher in block 2 than block 1. This could have 

been due to several different reasons. The participants may have become less motivated over 

the course of the experiment. It is also possible that participants tended to increasingly use 

simplifying heuristics. One open-ended comment supported this explanation (“At first, I paid 

attention to duration and amount of consumption. After some videos, […] I divided the highest 

value in half […]”).  

Further, the peak-height and peak-duration-bias apparently depend on inter-individual 

difference variables such as ATI (Franke et al., 2018). As ATI is a personal resource for coping 

with technology as well as an interaction style rooted in the construct need for cognition 

(Cacioppo & Petty, 1982), the latter may fundamentally influence the biased dynamic 

perception of consumption displays. Therefore, drivers with higher tendencies to cognitively 

engage with systems might be less biased because of actively exploring consumption displays.  

Knowledge influences the perceived strategy effectiveness (Franke et al., 2016) and 

reduces the peak-duration-bias. However, experience with consumption displays does not 

impact any bias. This corroborates findings regarding other estimation biases in the driving 

context (Peer & Solomon, 2012; Svenson, 2009). However, knowledge and experience with 

consumption displays were self-rated in the present study instead of objectively measured. 
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In addition to the overestimation, monitoring of simple ICDs does not lead to a correct 

rankings of different acceleration sequences regarding their energy efficiency. The incorrect 

ordering might be due to heuristic estimations and the non-consideration of time or rather the 

dynamic process. Estimations based on only peak, peak and start consumption values or peak, 

start and end consumption values better fit the empirical ranking. If drivers are unable to 

identify the most energy efficient strategies, they obviously cannot select and apply them. 

Future experiments could include a pairwise comparison or consecutively presented 

sequences with an ordering task (“Which sequence was the most energy efficient?”) as indirect 

alternatives to consumption estimations. 

6.2 Design Implications 

Since judgment biases can be countered (e.g., Eriksson, Patten, Svenson, & Eriksson, 

2015; Larrick & Soll, 2008; Peer & Gamliel, 2013) and interfaces can support drivers during 

trips (e.g., Lundström & Bogdan, 2017), a fruitful strategy based on the present research is to 

develop and examine different variants of consumption displays to improve perception of 

energy efficient driving manoeuvres. It remains unclear if differences in ICD shape (e.g., bar, 

radial) and other display modes (e.g., digit vs. graphical, scale legend vs. no scale legend, 

normal scale vs. shrinking scale) could influence how magnitude changes are perceived. 

Shrinking small values (compared to larger values) could emphasize their proportion within 

one acceleration manoeuvre and therefore reduce overestimation. Nevertheless, it suggests 

that simple ICDs are insufficient to optimize energy efficiency. Besides the high perceptual 

workload and distraction potential, aggregating magnitude information with duration remains 

the main problem regarding eco-driving strategy selection.  

Information availability could be improved by providing previous information via a fading 

trace reflecting magnitude changes through different transparencies and width. Some 

interfaces already combine graphs of remaining range (in km), consumption over the last (x) 

km driven, or average consumption during the last (x) minutes, providing more information 

than a real-time snapshot (e.g., Tesla Model S). This approach can provide a clear reference 
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period and encourage the driver to consider magnitude information over time. The most 

obvious solution for the integration problem is to compute average consumption for each 

identified driving manoeuvre or situation. This could improve a manoeuvre-specific selection 

of strategies and focus on the increased energy loss during accelerations due to the 

energy/distance metric. Using a metric other than energy/distance might be also useful as 

accelerations should occur at the highest possible conversion efficiency of electric energy 

invested per kinetic energy gained (for a possible design and further discussion, see Franke, 

Görges, & Arend, 2019). 

6.3 Limitations and further research 

Different from Wu et al.’s (2016) more mathematical-quantitative approach, the present 

study instead compared a defined set of visualizations. Effects for smaller (< 60) or higher 

(> 100) peaks as well as longer peak durations remain unclear. Also, the given scale (0 to 100) 

may have created confounded estimations. 

Furthermore, it must be mentioned that the videos were larger than comparable 

displays in vehicles. Follow-up studies should closely examine the judgement biases 

influenced by visual angle. Moreover, the ecological validity of the current study is rather low 

given it occurred in an artificial setting. Participants may have employed the simplifying 

approach due to low motivation or increasing fatigue. As the setting was uncontrolled, it is also 

possible that participants were increasingly distracted. Thus the setting should be controlled in 

further experiments. Besides, this cause could also suggest that in a more complex and real 

driving situation simplifying heuristics are increasingly used to better balance the limited 

resources of attention. Further studies should consider actual driving behaviour as a 

dependent variable by testing different displays in the driving simulator. Likewise, it is important 

to obtain a more representative sample (age, driving experience, ATI) to make definitive 

statements about the impact of knowledge and experience. The present sample does not 

perfectly match the general population regarding ATI (M = 3.21) as the average ATI score in 

the population has been reported to be around 3.5 (Franke et al., 2018). The present study 
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centred on general psychological (perceptual) phenomena and thus systematic gaze 

strategies were not examined. Thus, driving experience was not a factor in the present study. 

Future research should examine gaze strategies as they likely differ between experts and 

novices. Nevertheless, it must be noted that expertise with consumption displays does not 

necessarily correlate with driving experience as some experienced drivers may rarely use the 

consumption display. Likewise, some with little driving experience may often use the display. 

In addition, experience with consumption displays had no influence on the cognitive biases in 

the present study. 

It is not the subject of our research, but abstract feedback could be more appropriate 

with higher expertise in energy-efficient driving styles, because motivation is then at the crucial 

level. In this case, an ecodriving learning mode (concrete feedback) and an ecodriving expert 

mode (abstract feedback) could be integrated. Nevertheless, this assumptions are too 

dissociated from the present research results. But it might be interesting to investigate the 

effect of different levels of ecodriving expertise as well as different feedback modes on 

perception biases, driving behaviour and gaze strategies 

The present study is only an initial step towards a more complex research agenda. The 

following step would be embedding the estimation task that included different display variants 

within an occlusion paradigm (Gelau et al., 2009; Gelau & Krems, 2004). It is possible to 

compare various factors on presentation level (shape, size, colour) or completely different 

display variants (e.g. fading yes / no, additional aggregated indicator yes / no, etc.). It is 

expected that in a real and more demanding driving situation, the identified biases will have an 

even stronger influence as heuristics were already used in the present experiment. More 

precisely, only perceiving display "snapshots" (in the direct or indirect field of view) might 

encourage heuristic estimations without accounting for the dynamic process. 
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6.4 Conclusion 

To conclude, a simple visualization of instantaneous consumption may be insufficient 

to determine the actual efficiency of different acceleration strategies. The present study 

revealed biases in perception of energy efficiency driving manoeuvers and potential for 

improvement. Therefore, the present research laid the foundation and can serve as a basis for 

further studies investigating the perception of dynamic data in general, as well as the effect of 

different dynamics of consumption sequences in particular.  
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8 APPENDIX 

Table A1. 
Translated items of inter-individual difference variables 

Scale name Item 

Experience 
with 
consumption 
displays 

When driving, I typically pay close attention to the display of the instantaneous consumption in order to save as much fuel as 
possible. 
The display of the instantaneous consumption hardly matters to me when I try to save fuel. 
The display of the instantaneous consumption helps me to assess which driving behaviour is fuel-efficient. 
When driving, I typically pay close attention to the display of the average consumption in order to save as much fuel as 
possible. 
The display of the average consumption hardly matters to me when I try to save fuel. 
The display of the average consumption helps me to assess which driving behaviour is fuel-efficient. 
Overall, I intentionally use displays while driving to save fuel. 
Displays do not really play a role for me when I try to drive energy efficiently. 

Technical and 
mathematical 
knowledge 

I have gained a good technical understanding of fuel-efficient acceleration through specific qualifications or personal activities. 

Concepts such as efficiency and conversion losses are familiar to me. 

I am familiar with integral calculus. 

I often solve mathematical-logical problems in my everyday life. 

Solving mathematical-logical problems does not pose a difficulty to me. 
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Table A2.  
Cross-level interactions with inter-individual difference variables 

 

No. interactions estimate SE df t p  

1 Peak-height*ATI -0.09 0.03 52.83 -3.04 .004 ** 
2 Peak-duration*ATI 1.72 0.62 52.98 2.79 .007 ** 
3 Peak-duration*peak-height*ATI -0.03 0.01 152.26 -2.33 .021 * 

4 Peak-height*experience with consumption displays -0.03 0.03 48.99 -0.83 .410  
5 Peak-duration*experience with consumption displays 0.67 0.64 48.99 1.04 .305  
6 Peak-duration*peak-height*experience with consumption displays -0.02 0.01 170.46 -1.07 .288  

7 Peak-height* knowledge -0.06 0.03 52.83 -1.85 .071  
8 Peak-duration* knowledge 1.51 0.65 52.97 2.33 .024 * 
9 Peak-duration*peak-height*knowledge -0.03 0.02 168.21 -1.76 .081  

Notes. ** p < .01; * p < .05.  

 


