
A Template Course for Teaching the
Development of Interactive Systems to Students

of Human-Computer Interaction⋆

Toni Schumacher1[0009−0001−1459−1206], Maged Mortaga1[0009−0002−3683−3621],
and André Calero Valdez1[0000−0002−6214−1461]

Institute of Multimedia and Interactive Systeme, University of Lübeck, Ratzeburger
Allee 160, 23562 Lübeck, Germany

{t.schumacher,maged.mortaga,andre.calerovaldez}@uni-luebeck.de
https://www.imis.uni-luebeck.de

Abstract. Human-Computer Interaction (HCI) is an essential skill for
the future. However, previous observations have revealed a discrepancy
between the programming training provided to HCI students and the
skillset required in the HCI field. This article describes the development
and implementation of a course tailored for 3rd-semester bachelor stu-
dents of HCI to provide them with practical skills in programming in-
teractive systems. The course, named Interactive Systems, spans two
semesters and includes a combination of lectures and programming exer-
cises, designed to meet the specific needs of HCI students. This module
aims to bridge the gap between general computer science programming
courses and the specialized requirements of HCI students. We present
the concept, realization, and evaluation of this module.

Keywords: Human-computer interaction · Education · Educational Re-
sources · Computer Science Didactics

1 Introduction

Human-computer interaction (HCI) is an interdisciplinary field that blends prin-
ciples from computer science, design, psychology, and cognitive science to under-
stand and improve the interaction between humans and computers. As technol-
ogy continues to advance, the role of HCI professionals has become increasingly
critical in creating user-centered designs that enhance user experience and ac-
cessibility. Despite the growing importance of HCI, many university programs
do not provide specialized training that addresses the unique requirements of
HCI students. Instead, these students are often directed to traditional computer
science courses, which may not fully cater to their educational needs.
⋆ This preprint has not undergone peer review or any post-submission improvements

or corrections. The Version of Record of this contribution is published in Lecture
Notes in Computer Science (LNCS,volume 15374), and is available online at https:
//doi.org/10.1007/978-3-031-76803-3_12

https://www.imis.uni-luebeck.de
https://doi.org/10.1007/978-3-031-76803-3_12
https://doi.org/10.1007/978-3-031-76803-3_12


2 T. Schumacher et al.

A significant challenge for HCI students is the difficulty in focusing on the
core competencies of HCI, especially when it comes to implementation-related
tasks. Traditional computer science courses often emphasize theoretical concepts
and programming skills without sufficiently covering HCI’s practical, design-
oriented aspects. This gap highlights the need to promote knowledge of imple-
mentation techniques through interactive, individualized approaches that include
practical exercises and reflective activities.

To address these challenges, HCI education should incorporate more hands-
on projects that simulate real-world scenarios, allowing students to apply their
knowledge in practical settings. Collaborative projects can also be beneficial,
as they mimic the multidisciplinary nature of professional HCI work, requiring
students to integrate insights from psychology, design, and computer science.

Contribution This article describes our efforts in developing a course for stu-
dents of human-computer interaction to help them gain practical skills in pro-
gramming interactive systems. The course, named Interactive Systems and held
at the University of Lübeck, spans two semesters and includes lectures and ex-
ercises, requiring students to participate over a full academic year. Although the
content of each semester is relatively independent, they are evaluated as a single
joint module.

2 Motivation

The primary motivation for developing a specialized course for HCI students
stems from the recognition that the skills and knowledge required in HCI signif-
icantly differ from those emphasized in conventional computer science curricula.
Several key factors presented underscore the necessity of a tailored educational
approach for HCI students.

2.1 Interdisciplinary Nature of HCI

HCI is inherently interdisciplinary, requiring knowledge from multiple domains,
including cognitive psychology, ergonomics, design principles, and social sciences,
in addition to technical skills in programming and software development. Tra-
ditional computer science courses predominantly focus on algorithmic thinking,
data structures, and systems programming, which, while essential, do not cover
the breadth of topics needed for a comprehensive HCI education. HCI students
need to understand how to design and evaluate user interfaces, conduct usabil-
ity testing, and apply human-centered design principles—all of which are not
typically covered in depth in standard computer science programs.

2.2 Focus on User-Centered Design

Unlike students of traditional computer science who often focus on system per-
formance and efficiency, HCI students prioritize user experience and usability.



A Template Course for Teaching the Development of Interactive Systems 3

This user-centered approach requires different skills and methods, such as user
research, prototyping, and iterative design processes. Standard programming
courses may not address these aspects, leaving HCI students without the nec-
essary tools to design effective and intuitive interactive systems. A specialized
course can bridge this gap by integrating user-centered design practices with
technical instruction.

2.3 Emerging Technologies and Frameworks

The landscape of interactive systems is rapidly evolving, with new technologies
and frameworks continuously emerging. HCI students must stay ahead of the
latest developments in web technologies, mobile applications, virtual and aug-
mented reality, and ubiquitous computing. Traditional computer science curric-
ula may not be agile enough to incorporate these rapidly changing technologies
into their coursework. A dedicated HCI course can provide timely and relevant
instruction on the latest tools and frameworks, ensuring that students are well-
prepared for the current job market.

2.4 Focus on Web Development

Web development is integral to HCI education, providing a versatile foundation
for creating user interfaces and experiences. Mastering web development equips
students with essential skills for designing interactive and responsive interfaces
and extends their capabilities beyond web applications. Modern frameworks like
React Native and Electron allow HCI professionals to use web development prin-
ciples to build native mobile apps and desktop applications, broadening their
technical expertise and application scope.

2.5 Practical and Applied Learning

HCI education benefits greatly from a hands-on, applied learning approach.
Students must engage in practical projects that allow them to apply theoret-
ical knowledge to real-world problems. Standard computer science courses often
emphasize theoretical concepts and abstract problem-solving, which, while valu-
able, do not always translate to the practical skills needed for HCI. A specialized
course can focus on project-based learning, where students develop interactive
systems, conduct usability studies, and iterate on their designs based on user
feedback.

2.6 Collaboration and Teamwork

HCI projects often involve interdisciplinary teams, requiring strong collaboration
and communication skills. Students must learn to work effectively with designers,
psychologists, and other stakeholders. Traditional computer science courses may
not emphasize these soft skills to the same extent. By incorporating collaborative
projects and team-based assignments, a dedicated HCI course can better prepare
students for the collaborative nature of the field.



4 T. Schumacher et al.

2.7 Requirements

Given these considerations, it is clear that HCI students require a distinct edu-
cational path that addresses their unique needs and prepares them for the chal-
lenges of designing user-centered interactive systems. The Interactive Systems
module is designed to fill this gap, providing HCI students with a comprehen-
sive and practical learning experience that combines technical skills with a strong
emphasis on user experience and usability. This tailored approach not only en-
hances the educational outcomes for HCI students but also ensures that they are
well-equipped to contribute to the advancement of human-computer interaction
in various professional contexts.

3 Didactic Approach

To help students attain advanced theoretical and practical competencies in the
development of interactive systems, we chose didactic approaches that facilitate
learning of both theoretical groundwork and practical skills in software develop-
ment.

As a core guiding principle, we apply constructivist paradigms [9] that align
with self-determination theory [4]. We try to pick the best fitting approach to the
individual learning pieces and a wide range of teaching tools, ranging from classic
lectures (passive learning) to methods such as problem-based learning [1,11] that
have been shown to be effective for teaching applicable knowledge [5].

HCI education benefits greatly from a hands-on, applied learning approach.
Students must engage in practical projects that allow them to apply theoretical
knowledge to real-world problems. Kolb’s experiential learning theory [7] states
that knowledge is created through experience and reflection. By incorporating
hands-on projects and real-world applications, our course allows students to
engage deeply with select frameworks and ensures that they will be capable of
creating an interactive system themselves after the course.

3.1 Individualized Learning and Motivation

One of the common challenges we encounter is the varying levels of prior edu-
cation in software engineering and programming among students. Therefore, it
is crucial to address these differences by providing individualized materials and
helping students identify which skills and theories they have mastered and which
ones they still need to work on.

To facilitate learning, we use a combination of didactic approaches. Our foun-
dation is based on self-determination theory [4], which posits that task satisfac-
tion is rooted in three innate psychological needs: autonomy, competence, and
relatedness. We design our teaching methods around these principles. We en-
courage autonomy by allowing students to choose lessons and tasks they are
comfortable with. We gradually increase the difficulty of problems to build com-
petence over time. Finally, we let students select their challenges to foster a sense
of relatedness in our approach.



A Template Course for Teaching the Development of Interactive Systems 5

Fig. 1. Division of the recorded course content for each semester into recorded lectures,
videos supporting the practical exercises and videos on additional more in-depth con-
tent. Information in total minutes of videos

3.2 Lectures and Flipped Classroom

We achieve this by employing a variety of methods that are uniquely combined
for our system. Specifically, lectures focused on theory are conducted in per-
son, facilitating peer discussions and reflections on different perspectives during
the lecture. This approach is particularly effective when the content requires
reflection to deepen understanding, even if it is not inherently difficult.

For practical learning, such as programming skills, we utilize flipped class-
rooms [2]. A flipped classroom means that the static instructional material usu-
ally received by the students in a passive learning environment is pre-recorded
as learning videos that are available on a learning platform. Students have the
flexibility to access these videos at their convenience, whether at home, during
their commute, or any other preferred location, and engage in exercises alongside
the video content. An overview of the recorded course content from the winter
semester of 2023 and the summer semester of 2024 can be found in Figure 1. In
this model, students can learn at their own pace, allowing them to adjust the
videos’ speed to match their skill levels. This flexibility also enables students
to revisit material they might have missed or found challenging. To deepen the
skills introduced in learning videos, exercises are given to the students as learn-
ing sessions that require them to apply the skills learned. Moreover, for these
sessions, we provide exercise office hours, where the instructors are present in
the lecture room and assist students when problems occur while conducting the
exercises.



6 T. Schumacher et al.

3.3 Cooperative and Problem-based Learning

Exercises must be handed in as groups, allowing more complex tasks and fa-
cilitating peer-to-peer cooperative learning. Cooperative learning [10] promotes
direct communication within groups and fosters teamwork, thus improving com-
munication skills, conflict resolution, and leadership skills [6].

These types of approaches address the required knowledge of the course.
We consider them the baseline knowledge and skills. Beyond this baseline lays
additional expert knowledge and skills necessary to give students a sense of
competence. However, these skills quickly branch into separate sub-skills, which
are hard to delineate from one another and rapidly evolve with technological
progress. The possible “tree of knowledge” is obviously larger than a single stu-
dent can learn in one year. Moreover, students may be more or less interested in
different parts of this tree. Here, we provide autonomy to the students to pick
a “mastery branch”. Students pick a specific technology that they apply to a
problem they have selected themselves.

For this project part of the course, we apply problem-based learning [1] as the
core method for teaching. In self-selected groups, students take a required and
maybe an additional optional project to apply their knowledge. These projects
are small real-world scenarios that students choose themselves. Here, they can
deepen their preferred knowledge branch and learn to apply it to a problem
that is important to them. This fosters a sense of autonomy, competence, and
relatedness. The required project is necessary to successfully complete the course,
while the optional project can attain additional credit for the final exam.

3.4 Exams and Assessment

The module aims to teach students both theory and practice in developing inter-
active systems. Our course employs a combination of formative and summative
assessments to provide a continuous feedback loop, enhancing student learn-
ing and performance. According to Black and Wiliam [3], formative assessment
practices, including low-stakes quizzes and regular feedback, play a crucial role
in raising educational standards.

Critical theoretical concepts introduced in lectures are evaluated interactively
using an audience response system (e.g., in our case, Slido), while practical skills
are assessed asynchronously through exercises tailored for flipped-classroom ses-
sions. An example question with accompanying answers presented to the students
is illustrated in Figure 2. Students then select the correct answers, followed by
the presentation of the correct responses. In cases where there is a significant
discrepancy in students’ selection of incorrect answers, the topic is revisited and
discussed with the students.

Still, developing interactive systems is a holistic skill set that requires knowl-
edge and competencies in a wide range of frameworks (e.g., backend technolo-
gies, frontend technologies, DevOps, version control, etc.); therefore, we assess
this holistic skill set using projects, as stated above. The project results can be
used as bonus credit in the summative final assessment in the form of a written

https://www.slido.com/


A Template Course for Teaching the Development of Interactive Systems 7

Fig. 2. Assessment of a sample question from a quiz. Following the students’ selection of
possible answers, the assessment is displayed. Correct responses are indicated in green,
whereas incorrect ones remain gray. Both the question and answers were translated
into English.

exam and provide flexibility and internal differentiation. Students can—to a cer-
tain extent—pick their preferred way of attaining credit, providing an additional
layer of autonomy.

3.5 Continuous Feedback and Improvement

To ensure that our approach aligns with the curriculum and students’ interests
and prerequisites, we elicit continuous feedback using different methods (e.g.,
short surveys at the end of lectures and formal university evaluation). The mod-
ule has undergone three large overhauls and continuously improved from both
the learner’s and teachers’ perspectives. In this article, we provide detailed feed-
back on the quality of those improvements.

4 Course Structure

The Interactive Systems module is structured over two semesters, with the first
semester focusing on foundational skills and the second semester advancing to
more complex technologies and applications.

4.1 Semester 1: Foundations of Web Development

The first semester aims to equip students with basic web development skills using
HTML, CSS, and TypeScript. The course content is presented in the following
sections.



8 T. Schumacher et al.

Introduction to Guided Development Students begin with an introduction
to development tools, specifically open source tools such as Visual Studio Code1

and git2. They learn git by solving gamified tasks from learngitbranching.js.org3.
Students acquire skills in using git and GitLab4 for project collaboration, resolv-
ing conflicts, merging branches, and writing README documents in Markdown.
Additionally, students learn the benefits of using a code formatter, such as Pret-
tier5. Furthermore, they gain an understanding of the basics of web page ren-
dering by browsers and deepen their knowledge of web development tools, such
as the browser’s built-in developer tools.

HTML Basics The second lecture addresses the fundamentals of HTML, in-
cluding tags, nesting, and typical HTML data structures. Students also learn
to use multimedia elements, such as picture, audio, and video. Additionally,
they gain an understanding of the semantic meaning and appropriate usage of
HTML elements. Students are then tasked with designing their own websites
and sharing them in the GitLab repository.

Cascading Style Sheets (CSS) Basics Students then learn the fundamentals
of CSS, including key concepts such as cascading, inheritance, and specificity. Ad-
ditionally, they gain an understanding of selectors, nesting, and advanced tech-
niques such as animations, transitions, and transformations. Students apply their
knowledge to solve gamified tasks, such as those found on flukeout.github.io6.
Subsequently, they apply their skills to enhance the websites they previously
developed.

CSS Layout The fourth lecture concentrates on CSS layout mechanisms, specif-
ically grid and flex layouts, media queries, float and position layout, to create
responsive and accessible designs. The lecture emphasizes HCI aspects, such
as developing accessible websites with media queries using principles of uni-
versal design and inclusive design, for instance, prefers-reduced-motion or
prefers-contrast. Students apply their knowledge to solve gamified tasks, such

1 Visual Studio Code. (Microsoft). Integrated Development Environment for Code
Editing. Retrieved from https://code.visualstudio.com/.

2 git. (Software Freedom Conservancy). Distributed Version Control System. Retrieved
from https://git-scm.com/.

3 learngitbranching.js.org. (Peter Cottle). Repository visualizer and sandbox with ed-
ucational tutorials and challenges. Retrieved from https://learngitbranching.js.org/.

4 GitLab. (GitLab, Inc.). DevOps Platform. Retrieved from https://gitlab.com/.
5 Prettier. (James Long and Prettier contributors). Code formatter. Retrieved from

https://prettier.io/.
6 flukeout.github.io. (Luke Pacholski). Learn CSS Layout. Retrieved from https://

flukeout.github.io/.

https://code.visualstudio.com/
https://git-scm.com/
https://learngitbranching.js.org/
https://gitlab.com/
https://prettier.io/
https://flukeout.github.io/
https://flukeout.github.io/


A Template Course for Teaching the Development of Interactive Systems 9

as Flexbox Froggy7 to learn flexbox layout or Grid Garden8 to learn grid layout,
before applying their skills to enhance the websites they are developing.

DevOps Fundamentals Students are introduced to basic client-server infras-
tructure, setting up a web development environment using pnpm9 as package
manager and Vite10 as dev server and bundler, also applying pre- and post-
processors for CSS and using tsc to transpile typescript.

CSS Frameworks Students learn about CSS frameworks such as Tailwind
CSS11, daisyUI12, OpenProps13, UnoCSS14, and Bootstrap15. They also explore
Font Awesome16 and Tabler Icons17 for standardized iconography.

TypeScript Basics The seventh lecture introduces TypeScript, emphasizing
its benefits as a statically typed language. Students learn about the advantages
of static code analysis using ESLint18. Additionally, they are taught about the
DOM and Node API, events, and global functions. More advanced TypeScript
topics, such as syntactic sugar and array functions, are also covered. Further-
more, students apply these concepts to their website projects.

Asynchronicity In the eighth and ninth lectures, advanced asynchronicity tech-
niques using TypeScript are covered. Students gain an understanding of asyn-
7 Flexbox Froggy. (Codepip). An interactive game for learning CSS flexbox layout.

Retrieved from https://flexboxfroggy.com/.
8 Grid Garden. (Codepip). An interactive game for learning CSS grid layout. Retrieved

from https://cssgridgarden.com/.
9 pnpm. (contributors of pnpm). Fast, disk space efficient package manager. Retrieved

from https://pnpm.io/.
10 Vite. (Evan You & Vite Contributors). Fast and lean build tool for modern web

projects. Retrieved from https://vitejs.dev/.
11 Tailwind CSS (Tailwind Labs). Utility-First CSS Framework for Rapid UI Develop-

ment. Retrieved from https://tailwindcss.com/.
12 daisyUI. (Pouya Saadeghi). Component library for Tailwind CSS. Retrieved from

https://daisyui.com/.
13 OpenProps. (Adam Argyle). CSS library with custom properties to help accelerate

adaptive and consistent design. Retrieved from https://open-props.style/.
14 UnoCSS. (Anthony Fu). Instant on-demand atomic CSS engine.. Retrieved from

https://unocss.dev/.
15 Bootstrap. (The Bootstrap Authors). HTML, CSS, and JS library for developing

responsive, mobile first projects on the web. Retrieved from https://getbootstrap.
com/.

16 Font Awesome. (Fonticons, Inc). Icon and font library. Retrieved from https://
fontawesome.com/.

17 Tabler Icons. (Paweł Kuna). Icon library. Retrieved from https://tabler.io/icons.
18 ESLint. (OpenJS Foundation and ESLint contributors). Static code analysis tool for

identifying problematic patterns found in web code. Retrieved from https://eslint.
org/.

https://flexboxfroggy.com/
https://cssgridgarden.com/
https://pnpm.io/
https://vitejs.dev/
https://tailwindcss.com/
https://daisyui.com/
https://open-props.style/
https://unocss.dev/
https://getbootstrap.com/
https://getbootstrap.com/
https://fontawesome.com/
https://fontawesome.com/
https://tabler.io/icons
https://eslint.org/
https://eslint.org/


10 T. Schumacher et al.

chronous function calls and promises. They also learn about syntactic sugar for
promises using async and await. Additionally, students are introduced to the
architectural software paradigm of Representational State Transfer (REST) and
how to use REST APIs with the Fetch API. Students then apply these concepts
to their website projects.

Client-Server Architecture The final lecture of the first semester instructs
students on setting up a Node.js server using the Express19 framework, including
a database with json-server20, and developing an API in their client-server ar-
chitecture for their website. Additionally, students are introduced to server-side
implementation architectures, such as Server-Side Rendering (SSR), Client-Side
Rendering (CSR), and Static Site Generation (SSG), as well as client-side im-
plementations, including Single Page Applications (SPA) and Multi-Page Appli-
cations (MPA).

Optional Project At the end of the first semester, students undertake a com-
prehensive software project that incorporates all the tools and concepts learned
throughout the course. This optional project, which offers the opportunity to
earn bonus points for the exam, involves pitching their own project ideas, receiv-
ing feedback, and presenting their final work. The project is designed to deepen
the students’ understanding of the concepts covered and includes implement-
ing a website in form of a client-server architecture. Additionally, it emphasizes
Human-Computer Interaction aspects by requiring the creation of a responsive
website, adaptable for use on both smartphones up to desktop screens. Students
are also instructed to implement accessible websites using the concepts they have
learned. Examples of student work can be found in section 5.

4.2 Semester 2: Advanced Web, Mobile and Desktop Development

In the second semester, students build on their foundational web development
knowledge and transition to more advanced web, mobile and desktop technolo-
gies.

React Framework and Mobile Applications The semester begins with
an introduction to the React21 framework for developing websites and mobile
applications. Students learn React basics using TSX, virtual DOM, and rec-
onciliation. They also explore React DevTools and integrate React into their
deployment procedures using GitLab for continuous integration and continuous
19 Express. (OpenJS Foundation). Fast, unopinionated, minimalist web framework for

Node.js. Retrieved from https://expressjs.com/.
20 json-server. (typicode). JSON-based REST-API mocking server. Retrieved from

https://github.com/typicode/json-server.
21 React. (Meta Platforms, Inc. and affiliates). JavaScript library for building

component-based user interfaces. Retrieved from https://reactjs.org/.

https://expressjs.com/
https://github.com/typicode/json-server
https://reactjs.org/


A Template Course for Teaching the Development of Interactive Systems 11

deployment (CI/CD). Students are then tasked with designing their own web-
sites using React and sharing them in the GitLab repository.

React Advanced Concepts Students delve deeper into React by learning
about props, event handlers, conditional rendering, states, the component life-
cycle with hooks like (useState and useEffect). They also study routing using
React Router and state management using Context-API. Furthermore, students
apply these concepts to their website projects.

React Styling and Frameworks The third week covers React styling and the
use of CSS frameworks such as daisyUI, Mantine22, and shadcn/ui23 to create
advanced and modern user interfaces. Additionally, students learn the benefits
of using Component Workshops when implementing websites with component-
based frameworks. The students are then tasked to apply styling to their React
projects.

Web Applications and Progressive Web Apps (PWAs) Students learn
about web applications and PWAs, including progressive enhancement, service
worker and the Push Render Pre-cache Lazy-Load (PRPL) pattern. They discuss
the benefits and downsides of PWAs compared to traditional web applications.

Native and Hybrid Mobile Applications In the fifth week, students are
introduced to native mobile app development for iOS and Android. They deepen
their understanding of the software stacks for both iOS and Android, learning
about the primary differences between the two operating systems and the apps
developed for them. Additionally, students explore hybrid app development using
frameworks such as React Native24. The course also covers the benefits and
drawbacks of native app development and hybrid app development in comparison
to web and progressive web development.

Desktop Applications In the sixth week, students delve into desktop appli-
cation development for operating systems such as Windows, macOS, and Linux.
They discuss the differences between desktop applications and mobile applica-
tions. Furthermore, students are introduced to desktop app development frame-
works, such as Electron25.
22 Mantine. (Vitaly Rtishchev). React component library. Retrieved from https://

mantine.dev/.
23 shadcn/ui. (shadcn). Component library. Retrieved from https://ui.shadcn.com/.
24 React Native. (Meta Platforms, Inc.). JavaScript and React library for building

native mobile apps. Retrieved from https://reactnative.dev/.
25 Electron. (OpenJS Foundation and Electron contributors). Library for building

cross-platform desktop apps with web standards like Vite and React. Retrieved from
https://www.electronjs.org/.

https://mantine.dev/
https://mantine.dev/
https://ui.shadcn.com/
https://reactnative.dev/
https://www.electronjs.org/


12 T. Schumacher et al.

Game Programming, Game Engines and Game Rendering In the sev-
enth, eighth, and ninth weeks, students are introduced to game engines, game
programming, and rendering in games. They begin by exploring the fundamen-
tals and concepts of game engines, with an introduction to game engines such
as Unity26. Additionally, students learn about game programming, covering top-
ics such as game genres and game production efforts. They delve into game
concepts and the development of serious games, highlighting their significance
in human-computer interaction and interactive systems. Finally, students study
rendering in games, focusing on the rendering pipeline, particularly the 3D ren-
dering pipeline as described by Malaka et al. [8], including concepts such as
tessellation, culling, lighting, shading, clipping, and viewport mapping.

Specialized Frameworks During the final eight weeks of the semester, stu-
dents choose to specialize in React Native, Electron, or Unity for their program-
ming project. Working in groups of up to three, they may develop a desktop
application using Electron, a hybrid application using React Native, or delve
into game programming using Unity. Fundamentals of using these frameworks
is provided through prepared video content. Additionally, students can utilize
help desk appointments to address their questions. The concept of individualized
learning is presented in section 3.

Optional Project At the end of the second semester, students have the op-
portunity to participate in an additional project before pitching and presenting
their final projects, which utilize the specialized frameworks Electron, React
Native, or Unity. This optional project, which offers the opportunity to earn
bonus points for the exam, involves evaluating the usability of the implemented
applications to enhance their understanding of human-computer interaction.

5 Student Results

Following the acquisition of the foundations of web development, students were
given the opportunity to pitch their own ideas for a web application, which they
would then implement using the technologies learned during the course. This
hands-on project allowed students to apply their knowledge in a real-world con-
text, receive feedback, and, for students with prior experience, explore advanced
technologies.

The project was optional in the first semester of the course, yet it received a
positive response. Among the 61 total students, 28 opted to participate in the
optional project. Participation in the project using specialized frameworks was
made mandatory for the second semester. However, as of the time of writing,
the student projects for the second semester are still ongoing and thus cannot
be summarized.
26 Unity. (Unity Technologies). Cross-platform game engine. Retrieved from https://

unity.com/.

https://unity.com/
https://unity.com/


A Template Course for Teaching the Development of Interactive Systems 13

This chapter highlights the creativity and technical skills demonstrated by
the students through a summary of selected projects from the first semester.

5.1 TankAlarm

The first highlighted project is called TankAlarm. It is a responsive website
tailored for smartphones that is designed to notify users when a predetermined
price threshold for a selected type of gasoline is reached at nearby gas stations. It
achieves this by using the Tankerkönig API 27. Users receive push notifications
upon reaching the predetermined price threshold.

5.2 NoteSync

The next project showcased app is NoteSync, a learning app that allows students
to take notes collaboratively and enhances group-based learning. The idea is to
create groups with fellow students and to collect and share a collective knowledge
base. The website also allows users to ask questions about certain posts within
a group, facilitating peer-to-peer learning and support. The website operates
in real-time, using WebSockets, allowing students to see updates and additions
as they happen. The messages also support Markdown as well as KaTeX28 to
format the posts or questions.

5.3 Flea

The final highlighted project is Flea. It is a website designed to help users search
and discover flea markets. Additionally, users can create their own flea markets
as well. The website offers easily accessible filters to help users find specific
types of markets that align with their interests. It also features a map interface
that allows users to view the location of different flea markets in their vicinity,
providing a visual and intuitive way to explore flea markets.

The students’ projects demonstrate remarkable creativity, technical skills,
and practical application. From TankAlarm, which uses modern web technolo-
gies to provide real-time price notifications to NoteSync, an innovative learn-
ing and knowledge base app facilitating collaborative note-taking, and Flea, a
community-driven platform to create and discover flea markets, each student
project showed their ability to address real-world problems with sophisticated
solutions. These projects highlight not only the technical proficiency gained
through the course but also the students’ ability to understand and meet user
needs. The diverse range of applications underscores the broad applicability of
the skills learned and the students’ readiness to tackle various challenges in the
field of HCI. This chapter showcases some of their impressive outcomes, setting
a high standard for future students and illustrating the course’s effectiveness in
preparing them.
27 Tankerkönig API. (Tankerkönig). Real-time petrol API. Retrieved from https://

creativecommons.tankerkoenig.de/.
28 KaTeX. (Khan Academy and other contributors). Math typesetting library. Re-

trieved from https://katex.org/.

https://creativecommons.tankerkoenig.de/
https://creativecommons.tankerkoenig.de/
https://katex.org/


14 T. Schumacher et al.

Fig. 3. Screenshot of the NoteSync (left) and TankAlarm (right) website interface

Fig. 4. Screenshot of the Flea website interface



A Template Course for Teaching the Development of Interactive Systems 15

14

4

2Bachelor IT Security

Bachelor Informatics

Bachelor Media Informatics

0 5 10 15
count

co
ur

se
 o

f s
tu

dy

Courses of Study of participants

Fig. 5. Courses of study of participants

11

9

Yes

No

0 3 6 9 12
count

an
sw

er

Did you take part in the optional project?

Fig. 6. Participation in optional projects

6 Evaluation

To demonstrate how we ensure the success and continuous improvement of our
course, we showcase the results of a mid-semester evaluation. This section, shows
how we evaluate the Interactive Systems course based on data collected through
an online survey during the course.

6.1 Sample

We collected our evaluation data through an online survey administered dur-
ing the summer semester. Participation in the survey was voluntary. A total
of twenty students (n = 20) participated, including fourteen from the Media
Informatics program, four from the Computer Science program, and two from
the IT Security program (see Fig. 5). Among these participants, eleven students
engaged in the optional project offered during the course (see Fig. 6).



16 T. Schumacher et al.

6.2 Method

We designed the survey to gather both quantitative and qualitative feedback
from students about their experiences with the course. The survey included ques-
tions about their perceptions of learning success, specific elements of the course
they found beneficial, and aspects they felt could be improved. We measured
quantitative responses on a six-point anchored Likert scale (translated from the
German school grades: 1 = very good, 2 = good, 3 = satisfying, 4 = sufficient,
5 = poor, 6 = unsatisfactory), while open-ended questions provided qualitative
insights. Our survey focused on the following areas:

– Participation in the optional project and its perceived learning success.
– Evaluation of course components, including help desk sessions, quizzes, on-

line lectures and recordings, and group work.
– Unique aspects of the course that distinguished it from other courses.

6.3 Results

Out of the 20 students, 11 participated in the optional project. Of these, 6
students reported that their learning success from the optional project was very
high with absolute certainty, while 5 students indicated their learning success as
mostly high (see Fig. 7).

6

5

absolutely not

mostly not

rather not

rather yes

mostly yes

absolutely yes

0 2 4 6
count

an
sw

er

High learning success in the optional project

Count of participants who took part in optional project

Fig. 7. Students reporting high learning success in the optional project

The qualitative survey highlighted several positive aspects of the course (see
Fig. 8:

– HelpDesk Sessions: Students appreciated the help desk sessions, noting
that they provided valuable support and allowed for detailed questions to be
addressed.



A Template Course for Teaching the Development of Interactive Systems 17

– Quizzes: The quizzes were well-received as they helped reinforce learning
and provided a self-assessment tool for students.

– Online Lectures and Recordings: Students highly valued the availability
of online lectures and recordings, which offered flexibility and the opportu-
nity to review the material at their own pace.

– Group Work: Group projects and collaborative tasks were seen as benefi-
cial, fostering teamwork and allowing students to apply their knowledge in
practical settings.

helpdesk
beginning

lecture
good

groups
learning

videosasynchronous

check

contentexercisegoals

group

helpful

interactive

interactivity

introduction

lecturesoptional

part

practical

projects

quiz

recordingrecordings

sizes

support

tasks
understood

accessibilityadjustment

allows

along

already

appreciate

assessments

async

availability

board

class

definitely

desk

display

entire

exam

exercises

forced

form

format

freedoms

front
help

implementation

increases

listing

looked

max

moodleonline overview

people

preferably

presentproject

provide

quizzes

really

recaps

related

relevance

relevant

retainedself
semestersmallsmaller

split

student

submissions
substitute

success

supporting

syncthings times
within

youtube

Most frequent mentions

What was good about the course and should be retained?

Size determined by frequency of mentions

Fig. 8. Students reporting on what they liked most about the course

Students particularly appreciated the following unique aspects of the course
that stood out in comparison to other courses in their course of study (see Fig. 9):

– Relatable Practical Content: The course content was highly relevant and
applicable to real-world scenarios, making it more engaging and useful for
students.

– Good Fit of Lectures: The alignment of lectures with course objectives
and practical exercises was noted as a strength, enhancing the overall learn-
ing experience.

The quantitative evaluation shows generally positive feedback for the course
improvements (see Fig. 10), with the majority of aspects receiving high ratings (1
or 2). The most highly rated improvements were the enhancement of recordings
with video jump marks and the restructuring of exercise sessions as a help desk
format, both receiving overwhelmingly positive feedback. The listing of learning
objectives in the Moodle course and the redesign of the Moodle course overview
had more mixed reviews but were still generally well-received. The definition
of learning objectives in the slide sets, labeling of asynchronous learning units,



18 T. Schumacher et al.

content
practical
lecture

can
helpdesk

able

course learninglecturer

actually

additionally apply

ask

directly exercises

freedom

help high

knowledge

many

pleasant

project

questionsrelationship

see

semester

something

step

students
support

systems

tasks

theoretical

toniused

accessi bl e

accumul at ed

active

appl i cat i on

app l ied

a p p ro a chassi stance

async

avai l abi l i t y

become

begi nni ng

cares

cd
chance choice ci

close

c losely

closer
concep ts

conce rns

co n fu si o n

constructs

c ourses de
deepen

deepened detail

de ta i l e d

d i ffe ren t due

el aborat i on

e lectron
existing facto

fam i l iar

feedback

feel

find first

focus

f rameworks

free

fun
gives

good

guide

helpful

impl ement

implement at ion

implement at ions

indus try

in ters y slearned

lectures

level

l ib ra ries

linked

low

lowermanner mate ria l

need

new

offered

online

opport uni t i es

op tiona l
p e rfe ctl y

plus

practice

p ro b l ems

pro jects

p ro ximi tyquick ly

react

really

recapsreceive
re l e va n ce

re sp o n d sresults

scope

se p a ra te

sessions

shape

si mul t aneous
standards

still

stress
s tudent

submi ssi onssuper support i ve
tang ib le

te a ch in g

t echnol ogi es

theory

th re sh o l d

unity

unlike

ususe
useful

values

working

Most frequent mentions

What distinguishes the InterSys course in your opinion compared to other courses?

Size determined by frequency of mentions

Fig. 9. Students reporting on how the course stood our compared to other courses

and reduction of exercise group sizes were also favorably rated, indicating that
students appreciated these changes.

6.4 Conclusion

Our evaluation of the Interactive Systems course indicates a high level of stu-
dent satisfaction, particularly with the practical, hands-on aspects of the course
and the support provided through help desk sessions. The optional project was
a significant contributor to perceived learning success. The combination of the-
oretical and practical components, along with flexible learning options such as
online lectures and recordings, contributed to a positive learning experience.

7 Conclusion and Future Work

The Interactive Systems module is designed to provide HCI students with a com-
prehensive and practical learning experience in programming interactive systems.
By combining foundational skills with advanced technologies, the course ensures
that students are well-equipped to meet the specific challenges of their field. The
module also emphasizes flexibility, allowing students to learn at their own pace
and focus on areas of personal interest.

At present, the course materials are only available in German. We intend
to translate these materials into English to make them accessible to a broader
audience. Furthermore, all course materials are developed with the objective of
being transformed into open educational resources, thereby benefiting a wider
academic community. Our future plans include creating a massive open online
course (MOOC) featuring lecture content, individual gamified exercises, reflec-
tion tasks, and self-assessments for learners. The MOOC is intended to be a free
learning resource available to everyone.



A Template Course for Teaching the Development of Interactive Systems 19

Fig. 10. Students reporting on how the course changes were perceived



20 T. Schumacher et al.

Acknowledgements We would like to thank the students for their continu-
ous feedback on how to improve this course. Translation of German qualitative
data to English was done semi-automatically using ChatGPT 4o after check-
ing for privacy issues. No privacy sensitive data was transmitted to OpenAI. A
translation check was done manually by the authors.

References

1. Barrows, H.S., Tamblyn, R.M., et al.: Problem-based learning: An approach to
medical education, vol. 1. Springer Publishing Company (1980)

2. Bergmann, J., Sams, A.: Flip your classroom: Reach every student in every class
every day. International society for technology in education (2012)

3. Black, P., Wiliam, D.: Inside the black box: Raising standards through classroom
assessment. Granada Learning (1998)

4. Deci, E.L., Ryan, R.M.: Self-determination theory. Handbook of theories of social
psychology 1(20), 416–436 (2012)

5. Hmelo-Silver, C.E.: Problem-based learning: What and how do students learn?
Educational psychology review 16, 235–266 (2004)

6. Johnson, D.W., Johnson, R.T., Smith, K.A.: Cooperative learning returns to col-
lege what evidence is there that it works? Change: the magazine of higher learning
30(4), 26–35 (1998)

7. Kolb, D.: Experiential learning: experience as the source of learning and develop-
ment. Prentice Hall, Englewood Cliffs, NJ (1984)

8. Malaka, R., Butz, A., Hussmann, H.: Medieninformatik Eine Einführung. Pearson
Deutschland (2009), https://elibrary.pearson.de/book/99.150005/9783863266523

9. Piaget, J.: Piaget’s theory. In: Inhelder, B., Chipman, H.H., Zwingmann, C.
(eds.) Piaget and His School: A Reader in Developmental Psychology. pp. 11–23.
Springer Berlin Heidelberg, Berlin, Heidelberg (1976). https://doi.org/10.1007/
978-3-642-46323-5_2, https://doi.org/10.1007/978-3-642-46323-5_2

10. Slavin, R.E.: Research on cooperative learning and achievement: What we know,
what we need to know. Contemporary educational psychology 21(1), 43–69 (1996)

11. Wood, D.F.: Problem based learning. BMJ 326(7384), 328–330 (2003)

https://elibrary.pearson.de/book/99.150005/9783863266523
https://doi.org/10.1007/978-3-642-46323-5_2
https://doi.org/10.1007/978-3-642-46323-5_2
https://doi.org/10.1007/978-3-642-46323-5_2
https://doi.org/10.1007/978-3-642-46323-5_2
https://doi.org/10.1007/978-3-642-46323-5_2

	A Template Course for Teaching the Development of Interactive Systems to Students of Human-Computer Interaction

