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 A B S T R A C T

To achieve necessary CO2e emission reductions in the maritime industry, decision support systems (DSS) 
can assist seafarers in energy-efficient operations. However, adequate evaluation measures beyond classical 
human–machine interaction (HCI) metrics are required to ensure these systems are human-centered and align 
with Industry 5.0 goals, including human–machine cooperation and basic psychological needs, especially 
autonomy. Objectives of this research were (1) to understand how different metrics evaluate route-planning 
DSS and a route adaptation feature, and (2) to explore autonomy support in DSS usage. Simulator (N = 
48) and online (N = 20) studies with experienced seafarers showed HCI metrics alone did not quantify 
the adaptation feature’s potential. Thematic analysis of interviews highlighted algorithm comprehensiveness, 
usability, user empowerment, and collaborative workflows as key autonomy aspects. Furthermore, seafarers 
preferred automated information acquisition and analysis but human decision-making for route planning. We 
discuss design guidelines to improve autonomy satisfaction for energy-efficient route planning.
1. Introduction

The maritime industry, especially commercial shipping, is a key 
working context, in which individual and organizational decision-
making plays a significant role in reducing global CO2e emissions 
(International Maritime Organization, 2021). Recognizing this, the 
International Maritime Organization (IMO) aims to reduce CO2e emis-
sions per transport work by at least 40% by 2030 and has mandated 
measures such as the Ship Energy Efficiency Management Plan to 
facilitate energy-efficient operations onboard (International Maritime 
Organization, 2011). In particular, fuel consumption for propulsion 
accounts for roughly 70% of a ship’s operating costs, and reducing it 
is a priority for both environmental and economic reasons (Rehmatulla 
and Smith, 2015). Nevertheless, the maritime industry faces an ’energy 
efficiency gap’, where the technical potential for consumption and 
emission reductions is not fully realized in practice (Jaffe and Stavins, 
1994; Johnson and Andersson, 2011; Acciaro et al., 2013). This gap 
presents an ongoing challenge that requires the attention of experts in 
human factors and ergonomics to support the United Nations Sustain-
ability Goals 13 (Climate Action) and 8 (Decent Work and Economic 
Growth) (United Nations, 2015).

Energy efficient route planning (EERP) is a key abatement mea-
sure to bridge the energy efficiency gap, showing reduction potential 
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of up to 48% of CO2e (Bouman et al., 2017). However, seafarers 
feel hindered by high workload, fatigue, and pressures exerted by 
shipping companies, charterers, and regulations (Zoubir et al., 2023; 
Poulsen and Sampson, 2019; Poulsen et al., 2022). These factors con-
tribute to a demanding work environment, complicating seafarers’ 
ability to perform operational abatement measures efficiently (von 
Knorring, 2019). One approach is implementing Decision Support Sys-
tems (DSS)—interactive, computer-based systems that assist users in 
balancing occupational demands with efficient, data-driven decision-
making, particularly in complex and dynamic environments (Shim 
et al., 2002).

DSS have demonstrated effectiveness in optimizing energy-efficient 
transportation by integrating diverse data sources. In public transporta-
tion, DSS incorporating geographical and traffic flow data have facil-
itated environmentally sustainable route planning (Arampatzis et al., 
2004). Similarly, DSS applications in urban logistics have reduced 
driving distances and emissions by optimizing vehicle routing based 
on multiple constraints (Leyerer et al., 2019). In the maritime sec-
tor, DSS leveraging Artificial Neural Networks have been developed 
to optimize fuel consumption by analyzing operational parameters 
such as ship speed, engine RPM, draft, and environmental conditions 
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(Beşikçi et al., 2016). By automating complex calculations and provid-
ing actionable recommendations, DSS can ease cognitive workload and 
support decision-making under operational pressures, making energy-
efficient route planning more feasible for seafarers (Beşikçi et al., 2016; 
Viktorelius et al., 2021). However, for DSS to be effective in high-
demand environments, they must align with user needs and workflow 
constraints.

Onboard, technical systems risk abandonment if they do not support 
operational realities (Viktorelius, 2017). To ensure human-centered 
(focused on users’ requirements) rather than technology-driven design, 
which can cause usability and adoption issues (cf. Grech et al., 2008), 
comprehensive assessment questionnaires can quantify how well user 
requirements are met. Classical human–machine interaction metrics, such 
as usability and user experience, are crucial for optimizing individ-
uals’ interaction with a system. Simultaneously, in dynamic working 
environments where humans and systems collaborate, human–machine 
cooperation metrics, such as trust and perceived cooperativity, can 
assess a system’s role in achieving mutual goals (Hoc, 2000). Even 
so, these approaches are strongly focused on the human and machine 
aspects of interaction and may neglect other work aspects, such as 
intrinsic motivation and well-being. This latter metric may be crucial 
for Industry 5.0, which aims to place employees at the center of 
production processes, as emphasized, e.g., by the European Commis-
sion’s report highlighting the necessity of addressing workers’ needs 
(European Commission et al., 2021).

One example to illustrate need frustration onboard is that seafarers, 
despite the requirement to operate energy efficiently, have limited con-
trol over their actions due to regulations or charterer contracts (Poulsen 
and Sampson, 2019), reducing their scope of action and introducing a 
goal conflict. Additionally, seafarers experience reduced control beyond 
these limitations (Zoubir et al., 2023), leading to decreased motivation 
to apply available abatement measures. To quantify this subjective ex-
perience, Basic Psychological Needs (BPN) can be applied. According to 
Self-Determination Theory (Ryan and Deci, 2000), BPN includes three 
needs that, when satisfied, enable intrinsic motivation: Competence, 
feeling effective in one’s interactions with the environment; Relatedness, 
feeling connected to others; and Autonomy, feeling in control of one’s 
actions and goals. Previous studies indicated that seafarers experience 
reduced autonomy need satisfaction at work compared to competence 
or relatedness (Zoubir et al., 2025a), suggesting greater motivational 
potential for sustainable behavior if this need is fulfilled. While BPN can 
inform system design to increase need satisfaction (Hassenzahl et al., 
2010; Moradbakhti et al., 2024), further research on integrating these 
needs into DSS design is warranted. This includes an understanding of 
how (1) interaction, (2) cooperation and (3) BPN metrics can detect 
changes in system design.

First empirical research with BPN metrics in maritime systems 
found that seafarers utilizing a DSS providing route suggestions rated 
the DSS positively on usability and user experience but lower on 
autonomy need satisfaction compared to a digital map charting tool 
(Zoubir et al., 2025b). In this study, seafarers most often requested an 
adaption feature, i.e. the ability to adjust route plan details. However, 
it is unclear to what extent more adaptability indeed leads to more 
autonomy fulfillment. For one, while adaptability can increase feelings 
of control, in other contexts it has increased system complexity and 
users’ time on task (e.g. Nurkka, 2013; Mackay, 1991). Furthermore, 
previous research with seafarers identified a negative correlation be-
tween autonomy satisfaction at work and preferences for automated 
decision-making in route planning, i.e. those experiencing less freedom 
at work preferred more automation in their DSS (Zoubir et al., 2025a). 
Further research is therefore necessary to understand the relationship 
between DSS features and autonomy satisfaction.

One further important avenue to explore autonomy is to differenti-
ate facets of autonomy, especially in the context of human–machine 
interaction. Savolainen and Ruckenstein (2022), based on a review 
of human-algorithm interaction studies, identifies four specific aspects 
2 
of autonomy: algorithmic competence (understanding algorithms), sit-
uational mastery (overcoming challenges and seizing opportunities),
breathing space (freedom to make decisions), and co-evolution (collab-
orating with technology for mutual growth). Examining these facets 
during system development can provide a deeper understanding of 
emerging requirements for energy efficiency DSS.

1.1. Research objectives

The present research had two main objectives (RQ1-2) and one 
secondary objective (Table  1). First, we examined how a suggestion 
adaptation feature in a decision support system (DSS) affected eval-
uation metrics. RQ1 investigated and compared seafarers’ ratings of 
Human–Machine Interaction, Human–Machine Cooperation, and Basic 
Psychological Need Satisfaction measures during route planning with 
an EERP DSS. Second, we explored factors supporting autonomy during 
this DSS usage. RQ2 examined seafarers’ descriptions of autonomy 
with a DSS featuring suggestion adaptation, focusing on the facets 
algorithmic competence, breathing space, situational mastery, and co-
evolution. Finally, we investigated preferences for automation types 
and their relation to autonomy need satisfaction, seeking to replicate 
the findings of Zoubir et al. (2025a). RQ3 assessed seafarers’ pref-
erences for automation in route planning and whether a preference 
for automated decision selection correlated with low autonomy need 
satisfaction. Due to recruitment challenges, we conducted two empiri-
cal studies: a professional ship-bridge simulator study (N = 20) with 
quantitative data and interviews, and an online study (N = 48) to 
substantiate findings with a larger sample.

2. Method

The presented studies received ethical approval from the Univer-
sity of Luebeck ethics commission (Approval Number 2023–406). The 
online study was pre-registered at https://doi.org/10.17605/OSF.IO/
RTN7Q.

2.1. Participants

For the Simulator study, we recruited experienced seafarers (N
= 20) by approaching pilots and channel controllers during training 
exercises, in cooperation with the University of Applied Sciences in 
Flensburg, Germany. Participants, compensated e60, were familiar 
with the ship simulator. Due to technical errors in the survey tool, 
two surveys were excluded from the quantitative analysis (𝑛 = 18), but 
included in qualitative analyses (𝑁 = 20).

For the Online study, we recruited seafarers (N = 48) through 
mailing lists of international maritime training facilities, shipping com-
panies, and crewing agencies. Participants were compensated with e20 
via bank transfer. Data sets were inspected for plausibility, focusing on 
response timing and consistency (e.g., schematic response behavior) to 
ensure validity. Additionally, responses to an attention check at the 
beginning of the survey (‘‘Please select ’Somewhat disagree’ for this 
question’’.) were evaluated. No participants had to be removed.

Both populations included experienced nautical officers (Simulator: 
𝑀years = 7.5, SD = 7.4, Online = 𝑀years = 4.5, SD = 8.1), who 
had planned numerous routes (Simulator: 𝑀routes = 44 SD = 45.2; 
Online: 𝑀routes = 48, SD = 255.8). Regarding Affinity for Technology 
Interaction ATI, which evaluates a person’s tendency to engage actively 
in technology interaction (Franke et al., 2019), were above-average 
(score range: 1–6, Simulator: 𝑀 = 4.0, 𝑆𝐷 = 0.7; Online: 𝑀 = 4.1, 𝑆𝐷
= 0.7), being higher than the distribution of a quota sample assumed 
to represent the general population in Germany (3.61 as described 
in Franke et al., 2019). This aligns with the technical nature of the 
seafaring profession. Furthermore, participants rated their familiarity 
with other route planning software on a scale of 0 (not familiar at 
all) to 10 (extremely familiar). Participants were somewhat familiar 
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Table 1
Research Questions, Hypotheses, and Samples.
 Research Question Hypotheses/Comparisons Samples  
 RQ1: How do seafarers rate Human–Machine 
Interaction, Human–Machine Cooperation, and Need 
Satisfaction when using route planning tools for EERP?

Ha: DSS leads to higher ratings than map 
charting.

 

 Hb: DSS with suggestion adaptation leads to 
higher ratings than standard DSS.

Simulator; Online 

 RQ2: How do seafarers describe autonomy with a DSS 
featuring suggestion adaptation in terms of 
competence, breathing space, mastery, and 
co-evolution?

Descriptive; no hypothesis. Simulator only  

 RQ3: How do seafarers rate automation preferences in 
route planning, and does preference for decision 
selection correlate with low autonomy need 
satisfaction?

Hc: Preference for decision selection correlates 
negatively with autonomy need satisfaction.

Simulator; Online 
with third-party commercial software such as BonVoyage or Octopus 
(Simulator: M = 2.8, SD = (2.9); Online: M = 5.5, SD = (3.6)), and 
somewhat less familiar with websites such as OpenSeaMaps (Simulator:
M = 1.6, SD = 1.6; Online: M = 4.0, SD = 3.0). Therefore, participants 
were neither unfamiliar nor overly familiar with systems used or similar 
to those used in this study.

2.2. Procedure

In both studies, participants were tasked with planning three routes 
with the least fuel consumption possible between two positions in either 
the Alaskan, Mediterranean or Andaman Sea, with a duration between 
2 and 5 day. The routes were created together with subject-matter 
experts to ensure practical relevance and realism. In a within-subject 
design, participants used one of each route-planning tool once: (1) 
OpenSeaMaps (OSM; a digital charting tool), (2) an energy efficiency 
DSS (see Section 2.3) without an adaption feature, and (3) the DSS 
with an adaption feature. Order of tool and geographical location were 
counter-balanced across participants.

In the simulator, participants conducted planning in a professional 
ship bridge simulator (Wärtsila, 2023). They received comprehensive 
route planning information (e.g. vessel specifications, oceanographic 
and meteorological data). Participants performed watch duties during 
planning, including monitoring surroundings and avoiding collisions. 
After each planning session of max. 20 min (𝑀sec = 696.6, SD = 
671.8), they completed questionnaires in LimeSurvey v3.28 (Limesur-
vey GmbH, 2015). Online, participants only conducted route-planning 
with the web-based route-planning tools on their computers. They 
received comprehensive route planning information via text in the 
survey tool and each session lasted for max. 20 min (𝑀sec = 413.8, SD = 
334.9). Since the online study did not include a watch task, which could 
influence ratings of task-relevant metrics, we analyzed each sample 
separately for RQ1. For RQ3, which examined setting-independent 
constructs, we combined the samples.

2.3. Decision support system

The DSS utilized in this study was developed through a user-
centered design process as described in Schwarz et al. (2023). The 
interface (Fig.  1) was presented on a tablet (simulator) or a responsive 
web interface (online). The DSS included a nautical chart with optional 
overlays for e.g. atmospheric pressure isobars, current direction arrows, 
wind vanes, and significant wave height heat maps (A). The ship’s 
current position, past track, and suggested routes were also visualized 
(B). A timeline control simulated virtual ships’ progress along different 
routes while considering forecasted weather conditions (C). A fly-out 
module provided comparisons of routing options based on key perfor-
mance indicators (KPIs) such as fuel-oil consumption, travel duration, 
ETA, and weather warnings (D). In the ‘‘DSS with added adaption 
feature’’ condition, participants could access a dedicated screen for 
3 
editing route suggestions (E). This screen displayed pre-defined way-
points, which could be moved via drag-and-drop, or points between 
waypoints, allowing the addition of new waypoints. Participants could 
undo/redo changes. Saving the route updated the KPIs to reflect these 
changes, showing, for example, increases in time or reductions in fuel 
consumption.

2.4. Measures

A range of validated scales was used to assess Human–Machine In-
teraction, Human–Machine Cooperation, and Basic Psychological Need 
Satisfaction. Interaction measures included usability and user experi-
ence assessments, while cooperation measures focused on trust and 
perceived cooperativity. Psychological need satisfaction was evaluated 
in both technology use and workplace contexts, with subscales for 
autonomy, competence, and relatedness. Table  2 provides an overview 
of all measures, including their constructs, scale ranges, and citations.

Furthermore, we included the Preference for Automation Types 
scale (PATS; see Table  A.1 in Appendix  A), which assesses users’ 
preferences for either human or automated control of different levels of 
functions based on Parasuraman et al. (2000)’s framework. The scale 
includes four dimensions: information acquisition (e.g., ‘‘Gather data 
from multiple sources or sensors’’), information analysis (e.g., ‘‘Perform 
calculations with current data’’), decision selection (e.g., ‘‘Make a deci-
sion on which action(s) to carry out based on current data’’), and action 
implementation (e.g., ‘‘Put a decision into action’’). The development 
and validation of the scale is described in Zoubir et al. (2024b).

2.5. Statistical analysis

Power analyses with G*Power (Faul et al., 2007) assumed a medium 
effect size (𝑑 = 0.5 or 𝑟 = 0.3), 𝛼 = .05 and 𝛽 = .8. The minimum sample 
size for Ha and Hb (one-sided, dependent t -Tests) was 27. Therefore, 
the simulator sample (𝑛 = 18) lacked sufficient power to detect medium 
or small effects, so non-significant results may reflect false negatives. 
The online sample (𝑁 = 48) was sufficiently powered. The minimum 
sample size for Hc (one-sided, Pearson’s product-moment correlation) 
was 64, which was achieved by pooling both samples (𝑁 = 66). Pooling 
was justified as autonomy need satisfaction at work was a construct 
independent of DSS interaction and the PATS was administered before 
tool use. Additionally, Walter et al. (2019) found that online panel 
data has comparable psychometric properties and validity to conven-
tional data, further supporting the pooling of samples here. We utilized 
parametric tests despite partially non-normal distributions to maintain 
greater statistical power and sensitivity to detecting actual differences, 
while outliers were included to preserve the variability present in the 
sample. Effect sizes were interpreted in accordance with (Cohen, 2013).
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Fig. 1. Route-planning DSS. Displayed are weather overlays (A), route suggestions (B), dynamic timeline control (C), and route KPI comparisons (D). The route suggestion adaptation 
feature is displaying in E.
2.6. Qualitative analysis

Conducted interviews followed the proposed framework of auton-
omy in human–algorithm relations by Savolainen and Ruckenstein 
(2022). Following a semi-structured guideline, each of the four di-
mension was introduced and participants questioned about to what 
extent they felt the system fulfilled or did not fulfill that facet, and 
which system features contributed to this. An R-based offline tool for 
WhisperTranscribe (Radford et al., 2022; Wijffels et al., 2023) was 
used to transcribe the interviews verbatim, followed by verifying the 
accuracy of the transcripts. Thematic analysis was applied consistent 
with Braun and Clarke (2006). MZ and MG first familiarized themselves 
with the data and subsequently created initial codes. The coders then 
discussed observed patterns and develop initial themes in a workshop. 
Next, coders independently assigned participants’ responses to a theme. 
For each dimension, individuals’ responses were classified as pertaining 
to a theme or not. In this manner, we examined how many participants 
addressed a theme, without counting e.g. repeated mentions of a theme 
by an individual. Results of this initial coding cycle showed a strong 
4 
inter-coder reliability (𝜅 = .89). In a subsequent workshop, categoriza-
tions were discussed until coders obtained a consensus. See Appendix 
B for all themes and definitions.

3. Results

3.1. RQ1 - Evaluation metrics

3.1.1. Ha comparison of DSS with conventional charting tool
Ha predicted that DSS usage would lead to higher ratings of Human–

Machine Interaction, Cooperation, and BPN metrics compared to con-
ventional map charting tools. One-sided dependent t-tests showed a 
significant increase in all metrics except trust and autonomy need 
satisfaction in both samples (Table  3). Effect sizes ranged from small 
to large, with particularly strong improvements observed in Hedo-
nic Quality (𝑑 = 1.69, 0.98), Cooperativity (𝑑 = 0.77, 0.63), and 
Relatedness with Technology (𝑑 = 0.82, 0.56).

The pattern of results was largely consistent across both samples, 
though effect sizes were generally smaller in the online study, suggest-
ing that direct interaction with the DSS in a simulator setting may have 
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Table 2
Summary of Measures.
 Category Scale Name Construct Measured Range Citation  
 Interaction System Usability Scale (SUS) System effectiveness, efficiency, and satisfaction 0–100 (Brooke, 1996)  
 User Experience Questionnaire Short Scale 

(UEQ-S)
−3–3 (Schrepp et al., 

2017)
 

   Hedonic quality Emotional response and engagement  
   Pragmatic quality Perceived usefulness and functionality  
 Cooperation Checklist for Trust between People and 

Automation
Perceived trust in automation (reliability, 
predictability, dependability)

1–7 (Jian et al., 
2000)

 

 Perceived Cooperativity Scale Perceived cooperativity of agents in joint 
activities

1–6 (Attig et al., 
2024)

 

 Needs Basic Psychological Need in Technology Use 
(BPN-TU)

1–6 (Moradbakhti 
et al., 2024)

 

   Autonomy Self-regulate one’s experiences and actions  
   Competence Effectance and mastery  
   Relatedness to Others Socially connected to others through usage  
   Relatedness to Technology Socially connected to technology  
 Other Basic Psychological Need Satisfaction at Work 

Scale (BPNSWS)
Satisfaction of autonomy, competence, and 
relatedness needs at work

1–6 (Chen et al., 
2015)

 

 Preference for Automation Types Scale (PATS) Preference for automation in information 
acquisition, analysis, decision selection, and 
action implementation

1–6 (Parasuraman 
et al., 2000)

 

Table 3
Ha: Comparison of Human–Machine Interaction, Human–Machine Cooperation and BPN measures between conventional digital charting and Decision Support Systems.
 Simulator (𝑛 = 18) Online (𝑁 = 48)
 Measure Chart 

𝑀(𝑆𝐷)
DSS 
𝑀(𝑆𝐷)

𝑡 (𝑝) 𝑑 Chart 
𝑀(𝑆𝐷)

DSS 
𝑀(𝑆𝐷)

𝑡 (𝑝) 𝑑  

 Usability 41.7 
(20.4)

59.8 
(16.0)

2.91 
(.005)**

0.69 44.4 
(15.5)

55.1 
(13.8)

3.62 
(<.001)***

0.52  

 Hedonic 
Quality

−1.1 (1.1) 1.1 (1.1) 7.15 
(<.001)***

1.69 −0.5 (1.5) 1.0 (0.9) 6.79 
(<.001)***

0.98  

 Pragmatic 
Quality

−0.4 (1.7) 1.3 (1.2) 3.27 
(.002)**

.0.77 0.0 (1.4) 1.2 (1.0) 5.62 
(<.001)***

0.81  

 Trust 3.9 (1.4) 4.0 (0.6) 0.29 (.387) 0.07 3.9 (1.0) 4.1 (0.6) 1.09 (.141) −0.16 
 Cooperativity 2.8 (0.7) 3.7 (0.9) 3.27 

(.002)**
0.77 3.0 (0.9) 3.8 (0.7) 4.37 

(<.001)***
0.63  

 Autonomy 3.5 (1.5) 4.1 (1.2) 1.20 (.124) 0.28 4.2 (1.2) 4.0 (1.1) −0.69 
(.753)

−0.10 

 Competence 3.1 (1.2) 4.0 (1.1) 2.07 
(.027)*

0.49 3.5 (1.1) 4.0 (1.1) 2.36 
(.011)*

0.34  

 Relatedness 
(Others)

2.4 (0.9) 3.3 (1.2) 2.69 
(.008)**

0.63 2.8 (1.2) 3.4 (1.2) −2.98 
(.002)**

−0.43 

 Relatedness 
(Tech)

2.3 (1.1) 3.6 (1.3) 3.47 
(<.001)***

0.82 2.7 (1.4) 3.6 (1.3) 3.91 
(<.001)***

0.56  
amplified the perceived benefits. Notably, trust and autonomy need 
satisfaction showed no significant differences in either sample. This 
suggests that while the DSS improved perceived usability, cooperation, 
and competence, it may not have sufficiently addressed factors influ-
encing trust or autonomy perception, such as system transparency or 
user control.

Thus, Ha was only partially supported: Interaction metrics consis-
tently improved with large effect sizes, but trust and autonomy showed 
no significant differences.

3.1.2. Hb: Comparison of DSS with and without adaption feature
Hb: Comparison of DSS with and without Adaptation Feature
Hb predicted that DSS usage with a suggestion adaptation feature 

would lead to higher ratings of Human–Machine Interaction, Cooper-
ation, and BPN metrics compared to a DSS without this feature. One-
sided dependent t-tests showed a significant increase in trust, autonomy 
need satisfaction, usability, and hedonic quality in the online sample, 
with small effect sizes (Table  4). No significant improvements were 
found for cooperativity, competence, or relatedness with technology.

Effect sizes for trust (𝑑 = 0.42), autonomy (𝑑 = 0.41), usability 
(𝑑 = 0.29), and hedonic quality (𝑑 = 0.42) were small, suggesting 
5 
that while the adaptation feature improved user experience, its impact 
on overall perception remained modest. The simulator sample showed 
similar trends but with slightly stronger effects for usability (𝑑 = 0.52) 
and especially trust (𝑑 = 0.95). However, cooperativity and competence 
did not significantly improve in either sample, indicating that while 
the adaptation feature enhanced usability, trust and a feeling of being 
autonomous, it may not have strengthened perceptions of collaboration 
or user skill.

Thus, Hb was only partially supported: The adaptation feature 
improved ratings on selected scales, particularly trust, usability, and 
autonomy satisfaction, but did not lead to broader improvements across 
all measured metrics.

3.2. RQ2: Qualitative analysis of dimensions of autonomy

Interviews explored the four dimensions of human-algorithm inter-
action postulated by Savolainen and Ruckenstein (2022), and extracted 
factors supporting perceived autonomy during DSS usage. The results 
of the thematic analysis of seafarer interviews were summarized in an 
Ishikawa fishbone diagram (Ishikawa and Loftus, 1990, ; Fig.  2). Due 
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Table 4
Hb: Comparison of Human–Machine Interaction, Human–Machine Cooperation, and BPN measures between DSS- (without adaption feature) and DSS+ (with adaption feature).
 Simulator (𝑛 = 18) Online (𝑁 = 48)
 Measure DSS- 

𝑀(𝑆𝐷)
DSS+ 
𝑀(𝑆𝐷)

𝑡 (𝑝) 𝑑 DSS- 
𝑀(𝑆𝐷)

DSS+ 
𝑀(𝑆𝐷)

𝑡 (𝑝) 𝑑  

 Usability 59.8 
(15.97)

64.2 
(15.84)

2.20 
(.021)*

0.52 55.1 
(13.78)

57.4 
(12.50)

1.99 
(.026)*

0.29  

 Hedonic 
Quality

1.1 (1.11) 1.2 (1.22) 0.53 (.303) 0.12 1.0 (0.94) 1.3 (1.00) 2.90 
(.003)**

0.42  

 Pragmatic 
Quality

1.3 (1.17) 1.5 (1.19) 1.22 (.121) 0.29 1.2 (0.97) 1.1 (1.15) −0.72 
(.764)

−0.11 

 Trust 3.97 
(0.61)

5.00 
(1.25)

4.01 
(<.001)***

0.95 4.05 
(0.65)

4.40 
(1.14)

2.91 
(.003)**

0.42  

 Cooperativity 3.69 
(0.87)

3.87 
(0.88)

1.29 (.108) 0.30 3.75 
(0.69)

3.84 
(0.84)

1.07 (.146) 0.15  

 Autonomy 4.13 
(1.23)

4.68 
(1.13)

2.35 
(.016)*

0.55 4.03 
(1.09)

4.35 
(0.88)

2.86 
(.003)**

0.41  

 Competence 3.98 
(1.14)

4.13 
(1.32)

0.54 (.299) 0.13 4.01 
(1.08)

4.14 
(1.00)

1.18 (.122) 0.17  

 Relatedness 
(Others)

3.28 
(1.25)

3.61 
(1.37)

2.92 
(.005)**

0.69 3.38 
(1.16)

3.51 
(1.15)

1.13 (.132) 0.16  

 Relatedness 
(Tech)

3.65 
(1.28)

4.06 
(1.15)

1.59 (.065) 0.37 3.56 
(1.26)

3.76 
(1.30)

1.50 (.070) 0.22  
to space constraints, the following section summarizes only the major 
results and examples; please refer to Appendix  B for full definitions, 
quotations and theme distribution across participants.
Algorithmic competence. Regarding factors increasing their ability to 
interact with the algorithm, seafarers frequently mentioned features 
supporting Algorithm Comprehensiveness (n = 17), including explicit ex-
planations of the DSS or implicit assumptions by users. The latter often 
involved Data Transparency (n = 16), such as correlating unabridged 
wave height data with DSS route suggestions to reconstruct the tools’ 
planning process. Affordances supported Algorithm Recognition (n = 17), 
often regarding assumptions about how input data (e.g., Requested 
Time of Arrival) influenced outputs (e.g., Estimated Time of Arrival).
Perceived Limitations (n = 10) included scepticism about the certainty 
of suggestions, with seafarers suggesting e.g., traffic light systems to 
indicate system confidence in a result.
Situational mastery. To overcome challenges and make the most of 
opportunities, seafarers most often specified support via System Us-
ability (n = 14), particularly ease of use, which increased task speed, 
e.g. compared to traditional, manual route planning. Furthermore, 
seafarers pointed out support through Data Integration (n = 11), such 
as combining weather data typically displayed on different systems 
on the bridge onto one screen, and Data Visualization (n = 7) of 
information usually not displayed spatially or digitally (e.g. tide tables). 
Furthermore, seafarers mentioned Increased Decision Accuracy (n = 11) 
and Increased Confidence (n = 8), e.g., through features comparing 
route KPIs, or simply confirming that a human-created route would 
also be suggested by the DSS. A key Perceived limitation (n = 11) was 
insufficient data transparency (e.g. unclear how recent weather data 
was), which itself hindered seafarers’ need for safety.
Breathing space. Supporting the feeling of freedom to make
autonomous decisions, seafarers responses were coded for User Em-
powerment (n = 18), e.g. system considering additional calculations 
for which users do not have the capacity to consider, and Decision 
Flexibility (n = 18), the availability of an adaption feature. Furthermore,
Increased Work Efficiency (n = 13) would reportedly give seafarers the 
capacity to multitask other duties on the bridge. Additionally, seafarers 
mentioned the Moderating Effect of Work Experience (n = 11), suggesting 
that seafaring experience (e.g. familiarity with a geographical region) 
increases task efficiency more strongly than less experience. Regarding 
negative effects on breathing space, some seafarers warned of System 
Intrusiveness (n = 12), i.e. suggestions of routes seafarers would not 
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travel; potentially dangerous with less experienced seafarers. At the 
same time, the User Retains Responsibility (n = 12) for EERP and safety, 
and seafarers often mentioned that they could simply ignore the DSS if 
they disagreed with recommendations.
Co-evolution. Mutual growth of user and system was influenced by the 
possibility of Collaborative Workflows (n = 16), with seafarers often 
referring to DSS suggestions as ‘‘brainstorming’’ new routes. Similarly,
Co-Learning (n = 15) was experienced by seafarers receiving route 
suggestions they had never considered, and suggested the DSS incor-
porate historical routing data to adapt to personal preferences. Work 
experience was again relevant, with seafarers highlighting the need to
Balance System & Human Knowledge (n = 10). For example, one route 
suggestion through the Strait of Messina did not consider that this route 
requires taking on a pilot, which is non-digitalized experience knowl-
edge. A Perceived Limitation (n = 11) was a lack of trust, with some 
seafarers declaring necessary double-checking of DSS suggestions an 
impediment and suggesting that manual edits to routes be remembered 
and incorporated into future route suggestions.
General feedback. After discussing autonomy-related aspects, partici-
pants provided general feedback on their DSS experience, highlighting 
additional needs. Weather-related features were the most frequently 
mentioned (𝑛 = 7), followed by data representation and system trans-
parency concerns, including raw data access, quality indicators, and 
symbol clarity (𝑛 = 4). Requests for more route proposals (𝑛 = 3), 
trust-related concerns citing uncertainty or mistrust (𝑛 = 3), and map 
features such as legends, overlays, and scaling (𝑛 = 3) were also noted. 
Other aspects mentioned once included position tracking, ship data, 
waypoints, safety corridor displays, increased intuitiveness, system on-
boarding, pilot requirement indicators at ports, and fishery data. Some 
feedback was in response to issues raised while exploring autonomy 
facets, such as raw data access (Algorithmic Competence), weather 
integration (Situational Mastery), and intuitiveness (Breathing Space). 
However, aspects like safety corridor displays, pilot requirement indica-
tors, and fishery data point to broader usability and information needs 
beyond the autonomy framework, while participants issues regarding 
trust point to aspects more strongly associated with system trust.

3.3. RQ3: Correlation of autonomy need satisfaction at work and prefer-
ences for decision selection

After pooling samples from both studies (N = 66), preliminary 
explorations compared the subscales of the PATS to a neutral scale 
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Fig. 2. Fishbone diagram showing themes for Dimension of Autonomy in Human-Algorithm Interaction, with the number of participants coded as addressing each theme in 
parentheses.
mean of 3.5 via one-sample t -Tests. For Information Acquisition (𝑀
= 3.9, 𝑆𝐷 = 0.9, 𝑡(65) = 4.07, 𝑝 < .001, 𝑑 = 0.50, moderate effect) and 
Information Analysis (𝑀 = 4.0, 𝑆𝐷 = 0.9, 𝑡(65) = 4.17, 𝑝 < .001, 𝑑 = 
0.51, moderate effect), results deviated significantly from the neutral 
mean, suggesting seafarers prefer these functions be carried out by 
automated systems. For Decision Selection (𝑀 = 2.8, 𝑆𝐷 = 0.8, 𝑡(65)
= −7.04, 𝑝 < .001, 𝑑 = −0.87, large effect) and Action Selection (𝑀 = 
3.0, 𝑆𝐷 = 1.0, 𝑡(65) = −4.43, 𝑝 < .001, 𝑑 = −0.55, moderate effect), 
there was a significant difference in the opposite direction, indicating 
a preference for human control.

Previous research (Zoubir et al., 2025a) reported a negative corre-
lation between autonomy need satisfaction and preference for decision 
selection, suggesting that seafarers who experienced greater frustration 
with autonomy tended to report a greater preference for automated 
decision-making. This finding appeared counterintuitive, as one might 
expect lower autonomy satisfaction to correspond with a stronger 
preference for retaining decision control.

To replicate this, Hc predicted a negative correlation between au-
tonomy need satisfaction at work (BPNSWS, 𝑀 = 3.5, 𝑆𝐷 = 0.8) 
and the Decision Selection subscale of the PATS. However, Pearson’s 
product-moment correlation (𝑟(63) = −0.078, 𝑝 = .269) indicated only 
a weak negative relationship that was not statistically significant. Thus, 
Hc was not supported.

While the direction of the correlation aligned with previous find-
ings, the lack of statistical significance suggests that autonomy need 
satisfaction may not be a strong predictor of decision selection prefer-
ences in this sample, that additional factors influence this relationship, 
or that the sample size had limited statistical power to detect a small 
effect, if one existed.

4. Discussion

4.1. Summary

The objective of the current study was twofold: with experienced 
seafarers (1) examine the effect of a DSS suggestion adaption feature on 
Human–Machine-Interaction, Human–Machine-Cooperation, and Basic 
Psychological Need Satisfaction metrics with AB-testing, and (2) ex-
plore facets of autonomy in DSS usage with qualitative data analysis. 
For the first, results showed significant improvements in most metrics 
except trust and autonomy need satisfaction when comparing the DSS 
7 
to a digital charting tool. Comparing DSS versions, an adaption feature 
showed significant increases in autonomy satisfaction, trust, usabil-
ity, and hedonic quality. Thus, Ha and Hb were partially supported, 
showing improvements in selected Human–Machine Interaction, Coop-
eration, and BPN metrics. For the second objective, qualitative analyses 
underlined the role of Algorithm Comprehensiveness, System Usability, 
User Empowerment, and Collaborative Workflows in supporting the 
experience of autonomy. In further analyses exploring preferences for 
automation types, seafarers indicated preferring automated Information 
Acquisition and Information Analysis for EERP but preferred human 
Decision Selection and Action Implementation. Finally, a correlation 
analysis could not replicate a significant relationship between auton-
omy satisfaction at work and automated decision selection, meaning 
Hc was not supported.

4.2. Theoretical and methodological implications

Diversity of evaluation metrics. Some user experience research has mod-
eled BPN fulfillment using ratings of positive affect and hedonic quality 
(Hassenzahl et al., 2015, 2010), or with acceptance, intention to use, 
and hedonic quality (Stiegemeier et al., 2024). However, the present re-
search demonstrated two findings: (1) Ha showed that hedonic quality 
increased in parallel with competency and relatedness, but not auton-
omy, need fulfillment, and (2) Hb showed that increases in autonomy 
need fulfillment coincided with increases in hedonic quality, while 
competency and relatedness did not change significantly. This supports 
the conclusion of Stiegemeier et al. (2024) that generally fulfilling 
needs enhances enjoyment of tool usage. However, it also underlines 
the necessity of using a comprehensive set of evaluation metrics during 
system development. Focusing only on hedonic quality in comparisons 
between the DSS and the control condition would have overlooked the 
lack of features supporting trust and autonomy needs. This emphasizes 
the need for metrics tailored to the usage context. For example, the 
collaborative nature of EERP and challenges to experienced autonomy 
onboard indicated a need for Human–Machine Cooperation and BPN 
metrics.

Deeper understanding of seafarers. Our results indicate differences be-
tween seafarers and other user groups. Seafarers frequently requested 
access to large amounts of raw data to verify system reliability, em-
phasizing data transparency. Typically, trust research (cf. Hoff and 
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Bashir, 2015, for a key review) recommends automation transparency, 
including explicit system reliability information, but seafarers preferred 
manual checks, which increases friction (i.e., making a task more diffi-
cult to complete). This contrasts with ‘‘ease of use’’ design guidelines, 
where usability can lead to higher trust and performance (Brauner 
et al., 2019, e.g.,). Qualitative responses indicate that seafarers’ trust in 
DSS was contingent on their ability to cross-check system outputs rather 
than relying on system-provided reliability scores. Given their high 
safety requirements and experience in processing meteorological and 
oceanographic data, manual verification may serve as a trust-enhancing 
mechanism rather than a usability barrier, as seafarers see this as part of 
their professional role (Danielsen et al., 2021). In other words, seafarers 
preferred friction, which has been shown to be an effective nudge to 
calibrate trust in automated systems (Naiseh et al., 2021).

However, when seafarers rated preferences for automation types, 
they indicated a preference for automated information acquisition and 
analysis. This suggests that while manual reliability checks should re-
main possible, automated route calculation – especially the processing 
of aforementioned extensive meteorological and oceanographic data – 
is preferred. Given their rigorous training (International Maritime Or-
ganization, 2018), technical systems should support existing workflows 
(e.g., route safety checks) and complement areas where this training 
may be lacking, such as energy efficiency (Dewan and Godina, 2024). 
Furthermore, seafarers’ PATS ratings here highlight the need for sys-
tems to focus on human decision selection and action implementation. 
This can be achieved through the generation of new routing ideas or 
rationales for energy-efficient routing, respecting seafarers’ expertise 
and preference for control over decision making and execution.

4.3. Practical implications

4.3.1. Designing for autonomy
Fulfilling basic psychological needs at work is essential for fostering 

greater intrinsic motivation and well-being among employees (Deci 
and Ryan, 2008). Our qualitative analysis suggests concrete design 
guidelines to enhance the fulfillment of a key need that is particularly 
constrained on board: autonomy.

Regarding algorithm competence, explainable AI (XAI) can support 
users’ algorithm comprehension and recognition, e.g. by highlighting 
raw spatial data and captioning the influence on a suggestion (cf., 
e.g. Mohamed et al., 2022; Schrills and Franke, 2020). However, a 
systematic review of XAI research has underlined that explanations 
are often data-driven and not goal-driven, i.e. they do not explain the 
agency available to artificial and human agents (Anjomshoae et al., 
2019). To support XAI and autonomy needs, a DSS should therefore also 
visualize the proportion of systems’ processing to users’ input (e.g. data, 
conditions, or customization) on a suggestion.

Another key finding was how the integration and visualization of 
multiple data sources improved situation mastery through increased task 
efficiency, a principal advantage of Industry 4.0 applications (Zhang 
et al., 2021). To further enhance decision accuracy, spatial mapping 
should incorporate meta-information (e.g., data source and recency), 
which can positively impact confidence without reducing performance 
(Riveiro et al., 2014). Additionally, incorporating spatial–temporal vi-
sualizations (i.e., time as a fourth dimension) enhances the comprehen-
sibility of DSS suggestions and empowers users to generate situational 
explanations (Ltifi et al., 2016). However, reviews of DSS in clinical set-
tings have identified increased visualization complexity as a significant 
challenge (Wang et al., 2021), highlighting the necessity of human-
centered design, including performance testing, to ensure users are not 
overwhelmed.

Other reported advantages of increased efficiency were seafarers’ 
ability to multitask bridge duties (facilitated by the DSS being on a 
tablet), contributing to Breathing space. At the same time, seafarers per-
ceived a possible intrusiveness of suggestions and a moderating effect of 
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work experience on performance. Adaptable automation, where task al-
location is decided by the operator (Parasuraman and Wickens, 2008), 
could allow seafarers to customize the DSS level of automation to their 
preferences (e.g., suggest entire routes vs. suggest only improvements 
to manual routes), to find a balance between efficiency and system 
influence. While this could encourage seafarers to set automation to 
their level of experience, previous research with adaptable automation 
has shown that users often select constant high levels of automation, 
even under low system reliability (e.g. Sauer et al., 2011; Chavaillaz 
et al., 2016). However, BPN could be used to motivate the selection 
of lower levels of automation by appealing to seafarers’ increased 
autonomy and competence.

Feelings of growth in the sense of Co-Evolution were often linked 
with inspiration for routing alternatives, possibly indicating that some 
seafarers had a usual or prototypical route in mind before route sug-
gestions were created. DSS could increase learning effects by high-
lighting path similarities and differences between a prototypical route 
(e.g. based off historical data) and energy-efficient alternatives, and 
quantify KPI changes. Additionally, the maritime industry often in-
volves collaborative work between different officers on board and 
between onboard and offshore personnel (Zoubir et al., 2023, 2025a). 
DSS systems should include features that support workflows with third 
users, such as reporting rationales (e.g., projected trade-offs between 
time and consumption) for routing decisions, possibly in the form of 
data visualizations like Pareto curves (Garcia-Gonzalo et al., 2013), to 
empower users’ decision-making in multi-stakeholder teams.

4.3.2. Integrating motivation
The present research contributes to the growing body of motiva-

tion research in human factors, which has traditionally emphasized 
cognition (Szalma, 2014). By demonstrating how specific DSS fea-
tures can enhance autonomy – a key driver of intrinsic motivation – 
this study offers a structured approach to integrating motivation into 
human-centered design. Motivation is not only essential for technology 
adoption (Peters et al., 2018) but also helps mitigate mental fatigue 
(Herlambang et al., 2019), a known challenge in maritime operations. 
Moreover, it plays a crucial role in fostering long-term sustainability 
cultures (Hanson, 2013).

Prior research has shown that onboard fuel consumption trackers 
can reduce fuel use by up to 10%, particularly when combined with col-
laborative workshops that enhance knowledge and awareness (Jensen 
et al., 2018). However, such improvements depend on users’ willing-
ness to engage with new systems and processes, which is shaped by 
intrinsic motivation. The satisfaction of BPN has been found to strongly 
predict individuals’ preference for learning new things (Rowicka and 
Postek, 2023), aligning with broader behavioral change models in 
energy efficiency that emphasize intrinsic motivation as a key factor 
(e.g., Barr and Gilg, 2007).

By identifying design elements that enhance autonomy, this re-
search underscores the role of motivation in effective DSS implemen-
tation. Ensuring that systems align with users’ psychological needs 
can drive long-term engagement and facilitate sustainable behavioral 
change, reinforcing the key role of human factors in technological 
solutions for energy efficiency.

4.4. Limitations and future research

One of the primary limitations of this study is the diversity of the 
study sample. The population for the simulator study mainly consisted 
of seafarers operating in northern European waters. Although the sam-
ple for the online study was recruited internationally, we did not collect 
data on seafarers’ place of training or their shipping company. Con-
sequently, our results cannot account for influences by shipping type 
(e.g., tramp or line shipping) or company culture (cf. Hammander et al., 
2015). While the Standards of Training, Certification, and Watchkeep-
ing for Seafarers (International Maritime Organization, 2018) ensure 
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similar training content internationally, it is unclear to what extent 
other aspects of education (e.g., available time for simulator training) 
may influence seafarers’ personal requirements for a DSS or EERP, 
or even differences in BPN experience. These differences should be 
evaluated in future studies.

Furthermore, the PATS described a system with a static level of 
automation, where functions were either entirely human-operated or 
fully automated. This limits our understanding of how preferences 
might shift under dynamic automation conditions, an approach which 
could positively impact autonomy satisfaction (see Section 4.3). Future 
research should therefore examine preferences for adaptable or adap-
tive automation types, i.e., where task allocation is adjusted by the 
operator or the system (Parasuraman and Wickens, 2008), and evolve 
the PATS to better quantify dynamic conditions.

This study examined subjective assessments in DSS usage, providing 
insights into user interactions but not capturing performance outcomes 
like fuel efficiency. Subjective perceptions shape technology adoption 
(cf. Granić, 2024, for an overview of models), trust (Hoff and Bashir, 
2015), and decision-making (Bader and Kaiser, 2019). However, the ab-
sence of objective metrics limits direct evaluation of how DSS features 
impact operational efficiency, decision accuracy, or task effectiveness 
in real-world settings. Without performance-based data, it remains un-
clear to what extent increased motivation and perceived improvements 
translate into tangible benefits, such as reduced fuel consumption or 
faster response times. Future research should incorporate measures like 
fuel efficiency and task completion times to complement subjective 
evaluations and provide a more comprehensive assessment of DSS 
effectiveness.

5. Conclusion

Our findings emphasize the critical role of Human-Centered Design 
in developing sustainability applications for the maritime industry, 
particularly to support workers’ needs during energy-efficient oper-
ations. We demonstrated that classical Human–Machine Interaction 
metrics were insufficient to identify requirements for trust or autonomy 
needs. Additionally, we showed that suggestion adaptation features 
significantly enhanced autonomy fulfillment. Furthermore, by probing 
experienced seafarers, we provided design guidelines to support au-
tonomy in complex working environments like maritime navigation, 
including the integration and visualization of (meta-)data to support 
XAI and collaborative workflows onboard and onshore. Finally, our 
study offers insights into seafarers as a unique user group who preferred 
manual checks over automation transparency, which increases task 
friction but enhances trust. We highlighted avenues for future research, 
which should explore diverse shipping cultures and evaluations of 
adaptable automation. By focusing on human-centered, adaptable DSS, 
we can significantly improve operational efficiency and sustainabil-
ity while enhancing employee well-being and intrinsic motivation. 
Seafarers could thus better manage energy-efficient workflows while 
feeling more autonomous and supported, instead of being caught up in 
conflicting goals. This approach fulfills current industry needs, whilst 
establishing a solid foundation for the collaborative and innovative 
advancements envisioned in Industry 5.0, ultimately fostering a more 
sustainable and efficient maritime industry.

6. Key points

• Basic psychological need metrics can enhance human-centered 
DSS for industry 5.0

• Seafarers’ autonomy satisfaction may motivate energy-efficient 
route-planing

• Thematic analysis of seafarers’ autonomy experiences suggested 
key design guidelines

• Route adaptation features enhance autonomy and trust
• HCI metrics alone are insufficient for DSS evaluation
9 
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Appendix A. Preference for automation types scale

Imagine that an automated system could support the task of plan-
ning energy-efficient routes. This task includes steps such as gathering 
data on the ship and environment, calculating metrics such as fuel 
consumption, selecting an optimal route, and creating a voyage plan 
based on this route.

This automated system would work to complete steps that could 
have been (either partially or completely) performed by humans.

Please indicate the degree to which you would prefer the following 
steps to be carried out either solely by a human or solely by an 
automated system

Appendix B. Thematic analysis - Theme definitions and codings

See Table  B.1 and Fig.  B.1. 
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Table A.1
Preferences for Automation Types Scale.
 Task Preference

 Completely 
Prefer 
Human

Mostly 
Prefer 
Human

Somewhat 
Prefer 
Human

Somewhat 
Prefer 
Automated

Mostly 
Prefer 
Automated

Completely 
Prefer 
Automated

 

 Obtain data from relevant sources  
 Organize data based on criteria  
 Highlight which data might be important  
 Filter out irrelevant data  
 Predict task progression using current info  
 Process data to get new information  
 Fill gaps in the data using available info  
 Combine data from different sources to make deductions  
 Present options based on available information  
 Make a decision weighing costs and benefits  
 Use reasoning to make a decision  
 Make a decision based on conditions  
 Do the decided upon actions  
 Use tools or hardware to complete actions  
 Combine different actions to perform tasks  
 Ensure the chosen task gets done  
Fig. B.1. Codings. Note: Due to time constraints, participants 203 and 212 did not answer interview questions regarding Co-Evolution. 
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Table B.1
Algorithm Interaction Overview.
 Topic Code Definition Example Quote ID  
 

Algorithmic 
Competence

Algorithm 
Comprehensiveness

Statements reflecting users’ grasp of how the 
algorithm processes data or make decisions, and 
what features support this.

‘‘[...] the algorithm knows that if the weather is 
not so nice, then maybe we had better not go that 
way.’’

201  

 Algorithm 
Recognition

Statements identifying and acknowledging the 
presence of algorithms in the system, and the 
context used to identify them.

‘‘It then loaded various parameters, processed 
them and issued route suggestions.’’

208  

 Result Evaluation Statements reflecting users’ ability to critically 
evaluate the decisions made by algorithms, their 
outcomes and what features support this.

‘‘[...] then I take the route suggestions and 
compare it with my own ideas.[...]’’

211  

 Transparency & Trust Statements reflecting the extent to which users can 
see the data and operations used by algorithms, 
their perceived reliability and what features 
support this.

‘‘So it was just no longer clear to me why this 
program displayed this exactly.’’

215  

 Practical Implications Statements reflecting the impact of algorithms on 
users’ decision-making processes and their practical 
applications

‘‘[...]if you had to calculate it manually, it would 
really take longer. [...]’’

209  

 Perceived Limitations Statements identifying limitations of the system 
and suggestions for improvement.

‘‘Sometimes it just showed me information and I 
did not know where it came from.’’

219  

 

Situational 
Mastery

Increased 
Comprehension

Statements that emphasize the increased 
understanding of a situation or decision through 
system interaction.

‘‘[...]it took a second to load all the weather 
conditions for the simulation. But once they were 
loaded, it was very practical for me to compare.’’

218  

 Decision Accuracy Statements that highlight the system’s role in 
supporting the accuracy of decisions.

‘‘[...]it supports comparing fuel consumption and 
travel duration, which are crucial in shipping. 
Time is money, and so is fuel consumption. 
Ultimately, one must prioritize which factor takes 
precedence.’’

204  

 Usability Statements that discuss the system’s support in the 
effectiveness, efficiency, and satisfaction of 
decision-making in general, or specific features.

‘‘[...]makes it easier, clearer and faster’’ 202  

 Visualization Statements related to the visual representation of 
data.

‘‘[...]I could already see which factors were 
influencing it.’’

201  

 Data Integration Statements that highlight the integration and 
combination of different data types.

‘‘And in terms of energy efficiency, it is of course 
much easier because everything flows together.’’

211  

 Adaption Statements focusing on users adapting their 
decision-making based on system feedback.

‘‘[...]there were suggestions that I might not have 
considered, resulting in an ’aha’ moment, realizing 
that we can do it that way too.’’

212  

 Confidence Statements that reflect the users’ feeling of control 
and confidence in their decisions facilitated by the 
system.

‘‘And that is a great thing if you can avoid 
collisions and solve a second task at the same 
time.’’

218  

 Perceived Limitations Statements identifying limitations of the system 
and suggestions for improvement.

‘‘[...]in the end the decision is of course always 
dependent on the quality of the data that is 
utilized, but also on what the navigator or the 
decision-maker ultimately trusts in himself, the 
crew and the ship.’’

220  

 

Breathing 
Space

Decision Flexibility Statements emphasizing the freedom to choose or 
modify routes.

‘‘[...]I had a complete choice between the 
suggested routes, I could just as easily edit each 
individual route.’’

201  

 Work Efficiency Statements discussing how the system affects work 
efficiency and time management.

‘‘So the system creates a space for me in which I 
gain time.’’

204  

 Users’ Empowerment Statements emphasizing how the system empowers 
users or respects their autonomy.

‘‘Travelling [...]near Corsica, I would not have 
realized that you travel through there quickly and 
all that. It is easier, of course.’’

205  

 Users’ Retain 
Responsibility

Statements focusing on who makes the final 
decisions and the responsibility associated with 
them.

‘‘This means that the system does not interfere 
with my decision-making process or my intention 
to decide as I see fit.’’

208  

 System Intrusiveness Statements expressing negative feelings about the 
system’s intrusiveness or perceived control.

‘‘[...] is also a danger, to offer simple solutions.’’ 214  

 Work Experience Statements reflecting how experience and skill 
level affect the use of the system.

‘‘[...]the more experienced the navigators are, the 
more cautious or situationally aware they are in 
choosing their data and making decisions based on 
it.

214  

 Perceived Limitations Statements identifying limitations of the system 
and suggestions for improvement.

‘‘[route editing] was a bit time-consuming.’’ 206  

 (continued on next page)
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Table B.1 (continued).
 Topic Code Definition Example Quote ID  
 

Co-Evolution

Collaborative 
Workflow

Statements highlighting the collaborative aspect of 
working with the algorithm to achieve a common 
goal.

‘‘It provided me with a basic route, giving me the 
opportunity to work on making improvements.’’

209  

 Increased Task 
Efficiency

Statements referencing the efficiency and precision 
of decision-making when working with the system.

‘‘[...] the system is just better suited to 
implementing this than you could do manually.’’

202  

 Personalization Statements mentioning how the system offers 
customization based on user input.

‘‘[...] but the system is currently limited and 
cannot, for example, account for distances to 
obstacles that are personally important to me.’’

207  

 Co-learning Statements discussing the learning process between 
the user and the system.

‘‘To validate its decision, I really considered all the 
possibilities. Just as a final check, brainstorming or 
just to confirm it myself.’’

214  

 Trust Statements expressing trust in the algorithm’s 
recommendations and its reliability in various 
conditions.

‘‘[...] I trust that the person who programmed this 
knew what they were doing.’’

206  

 Balancing 
System/Human 
Knowledge

Statements referencing the need for a trade-off 
between algorithmic suggestions and human 
experience/knowledge.

‘‘[...]allows the watch officer to incorporate their 
experience into the simulation. If I know there is a 
low-pressure area somewhere, I can roughly 
estimate how the wind and waves will come 
from.’’

220  

 Perceived Limitations Statements identifying limitations of the system 
and suggestions for improvement.

‘‘But the system is already so limited that it 
cannot yet, for example, suggest distances to 
obstacles that are important to me individually, it 
will always suggest the same thing.’’

207  
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