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To achieve necessary CO,e emission reductions in the maritime industry, decision support systems (DSS)
can assist seafarers in energy-efficient operations. However, adequate evaluation measures beyond classical
human-machine interaction (HCI) metrics are required to ensure these systems are human-centered and align
with Industry 5.0 goals, including human-machine cooperation and basic psychological needs, especially
autonomy. Objectives of this research were (1) to understand how different metrics evaluate route-planning
DSS and a route adaptation feature, and (2) to explore autonomy support in DSS usage. Simulator (N =
48) and online (N = 20) studies with experienced seafarers showed HCI metrics alone did not quantify
the adaptation feature’s potential. Thematic analysis of interviews highlighted algorithm comprehensiveness,
usability, user empowerment, and collaborative workflows as key autonomy aspects. Furthermore, seafarers
preferred automated information acquisition and analysis but human decision-making for route planning. We

discuss design guidelines to improve autonomy satisfaction for energy-efficient route planning.

1. Introduction

The maritime industry, especially commercial shipping, is a key
working context, in which individual and organizational decision-
making plays a significant role in reducing global CO,e emissions
(International Maritime Organization, 2021). Recognizing this, the
International Maritime Organization (IMO) aims to reduce CO,e emis-
sions per transport work by at least 40% by 2030 and has mandated
measures such as the Ship Energy Efficiency Management Plan to
facilitate energy-efficient operations onboard (International Maritime
Organization, 2011). In particular, fuel consumption for propulsion
accounts for roughly 70% of a ship’s operating costs, and reducing it
is a priority for both environmental and economic reasons (Rehmatulla
and Smith, 2015). Nevertheless, the maritime industry faces an ’energy
efficiency gap’, where the technical potential for consumption and
emission reductions is not fully realized in practice (Jaffe and Stavins,
1994; Johnson and Andersson, 2011; Acciaro et al., 2013). This gap
presents an ongoing challenge that requires the attention of experts in
human factors and ergonomics to support the United Nations Sustain-
ability Goals 13 (Climate Action) and 8 (Decent Work and Economic
Growth) (United Nations, 2015).

Energy efficient route planning (EERP) is a key abatement mea-
sure to bridge the energy efficiency gap, showing reduction potential

of up to 48% of CO,e (Bouman et al., 2017). However, seafarers
feel hindered by high workload, fatigue, and pressures exerted by
shipping companies, charterers, and regulations (Zoubir et al., 2023;
Poulsen and Sampson, 2019; Poulsen et al., 2022). These factors con-
tribute to a demanding work environment, complicating seafarers’
ability to perform operational abatement measures efficiently (von
Knorring, 2019). One approach is implementing Decision Support Sys-
tems (DSS)—interactive, computer-based systems that assist users in
balancing occupational demands with efficient, data-driven decision-
making, particularly in complex and dynamic environments (Shim
et al., 2002).

DSS have demonstrated effectiveness in optimizing energy-efficient
transportation by integrating diverse data sources. In public transporta-
tion, DSS incorporating geographical and traffic flow data have facil-
itated environmentally sustainable route planning (Arampatzis et al.,
2004). Similarly, DSS applications in urban logistics have reduced
driving distances and emissions by optimizing vehicle routing based
on multiple constraints (Leyerer et al., 2019). In the maritime sec-
tor, DSS leveraging Artificial Neural Networks have been developed
to optimize fuel consumption by analyzing operational parameters
such as ship speed, engine RPM, draft, and environmental conditions
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(Besikgi et al., 2016). By automating complex calculations and provid-
ing actionable recommendations, DSS can ease cognitive workload and
support decision-making under operational pressures, making energy-
efficient route planning more feasible for seafarers (Besikci et al., 2016;
Viktorelius et al., 2021). However, for DSS to be effective in high-
demand environments, they must align with user needs and workflow
constraints.

Onboard, technical systems risk abandonment if they do not support
operational realities (Viktorelius, 2017). To ensure human-centered
(focused on users’ requirements) rather than technology-driven design,
which can cause usability and adoption issues (cf. Grech et al., 2008),
comprehensive assessment questionnaires can quantify how well user
requirements are met. Classical human-machine interaction metrics, such
as usability and user experience, are crucial for optimizing individ-
uals’ interaction with a system. Simultaneously, in dynamic working
environments where humans and systems collaborate, human-machine
cooperation metrics, such as trust and perceived cooperativity, can
assess a system’s role in achieving mutual goals (Hoc, 2000). Even
so, these approaches are strongly focused on the human and machine
aspects of interaction and may neglect other work aspects, such as
intrinsic motivation and well-being. This latter metric may be crucial
for Industry 5.0, which aims to place employees at the center of
production processes, as emphasized, e.g., by the European Commis-
sion’s report highlighting the necessity of addressing workers’ needs
(European Commission et al., 2021).

One example to illustrate need frustration onboard is that seafarers,
despite the requirement to operate energy efficiently, have limited con-
trol over their actions due to regulations or charterer contracts (Poulsen
and Sampson, 2019), reducing their scope of action and introducing a
goal conflict. Additionally, seafarers experience reduced control beyond
these limitations (Zoubir et al., 2023), leading to decreased motivation
to apply available abatement measures. To quantify this subjective ex-
perience, Basic Psychological Needs (BPN) can be applied. According to
Self-Determination Theory (Ryan and Deci, 2000), BPN includes three
needs that, when satisfied, enable intrinsic motivation: Competence,
feeling effective in one’s interactions with the environment; Relatedness,
feeling connected to others; and Autonomy, feeling in control of one’s
actions and goals. Previous studies indicated that seafarers experience
reduced autonomy need satisfaction at work compared to competence
or relatedness (Zoubir et al., 2025a), suggesting greater motivational
potential for sustainable behavior if this need is fulfilled. While BPN can
inform system design to increase need satisfaction (Hassenzahl et al.,
2010; Moradbakhti et al., 2024), further research on integrating these
needs into DSS design is warranted. This includes an understanding of
how (1) interaction, (2) cooperation and (3) BPN metrics can detect
changes in system design.

First empirical research with BPN metrics in maritime systems
found that seafarers utilizing a DSS providing route suggestions rated
the DSS positively on usability and user experience but lower on
autonomy need satisfaction compared to a digital map charting tool
(Zoubir et al., 2025b). In this study, seafarers most often requested an
adaption feature, i.e. the ability to adjust route plan details. However,
it is unclear to what extent more adaptability indeed leads to more
autonomy fulfillment. For one, while adaptability can increase feelings
of control, in other contexts it has increased system complexity and
users’ time on task (e.g. Nurkka, 2013; Mackay, 1991). Furthermore,
previous research with seafarers identified a negative correlation be-
tween autonomy satisfaction at work and preferences for automated
decision-making in route planning, i.e. those experiencing less freedom
at work preferred more automation in their DSS (Zoubir et al., 2025a).
Further research is therefore necessary to understand the relationship
between DSS features and autonomy satisfaction.

One further important avenue to explore autonomy is to differenti-
ate facets of autonomy, especially in the context of human-machine
interaction. Savolainen and Ruckenstein (2022), based on a review
of human-algorithm interaction studies, identifies four specific aspects
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of autonomy: algorithmic competence (understanding algorithms), sit-
uational mastery (overcoming challenges and seizing opportunities),
breathing space (freedom to make decisions), and co-evolution (collab-
orating with technology for mutual growth). Examining these facets
during system development can provide a deeper understanding of
emerging requirements for energy efficiency DSS.

1.1. Research objectives

The present research had two main objectives (RQ1-2) and one
secondary objective (Table 1). First, we examined how a suggestion
adaptation feature in a decision support system (DSS) affected eval-
uation metrics. RQ1 investigated and compared seafarers’ ratings of
Human-Machine Interaction, Human-Machine Cooperation, and Basic
Psychological Need Satisfaction measures during route planning with
an EERP DSS. Second, we explored factors supporting autonomy during
this DSS usage. RQ2 examined seafarers’ descriptions of autonomy
with a DSS featuring suggestion adaptation, focusing on the facets
algorithmic competence, breathing space, situational mastery, and co-
evolution. Finally, we investigated preferences for automation types
and their relation to autonomy need satisfaction, seeking to replicate
the findings of Zoubir et al. (2025a). RQ3 assessed seafarers’ pref-
erences for automation in route planning and whether a preference
for automated decision selection correlated with low autonomy need
satisfaction. Due to recruitment challenges, we conducted two empiri-
cal studies: a professional ship-bridge simulator study (N = 20) with
quantitative data and interviews, and an online study (N = 48) to
substantiate findings with a larger sample.

2. Method

The presented studies received ethical approval from the Univer-
sity of Luebeck ethics commission (Approval Number 2023-406). The
online study was pre-registered at https://doi.org/10.17605/0SF.10/
RTN7Q.

2.1. Participants

For the Simulator study, we recruited experienced seafarers (N
= 20) by approaching pilots and channel controllers during training
exercises, in cooperation with the University of Applied Sciences in
Flensburg, Germany. Participants, compensated €60, were familiar
with the ship simulator. Due to technical errors in the survey tool,
two surveys were excluded from the quantitative analysis (n = 18), but
included in qualitative analyses (N = 20).

For the Online study, we recruited seafarers (N = 48) through
mailing lists of international maritime training facilities, shipping com-
panies, and crewing agencies. Participants were compensated with €20
via bank transfer. Data sets were inspected for plausibility, focusing on
response timing and consistency (e.g., schematic response behavior) to
ensure validity. Additionally, responses to an attention check at the
beginning of the survey (“Please select ’Somewhat disagree’ for this
question”.) were evaluated. No participants had to be removed.

Both populations included experienced nautical officers (Simulator:
Myeas = 7.5, SD = 7.4, Online = M, = 45, SD = 8.1), who
had planned numerous routes (Simulator: M ., = 44 SD = 45.2;
Online: M, s = 48, SD = 255.8). Regarding Affinity for Technology
Interaction ATI, which evaluates a person’s tendency to engage actively
in technology interaction (Franke et al., 2019), were above-average
(score range: 1-6, Simulator: M = 4.0, SD = 0.7; Online: M = 4.1, SD
= 0.7), being higher than the distribution of a quota sample assumed
to represent the general population in Germany (3.61 as described
in Franke et al., 2019). This aligns with the technical nature of the
seafaring profession. Furthermore, participants rated their familiarity
with other route planning software on a scale of 0 (not familiar at
all) to 10 (extremely familiar). Participants were somewhat familiar
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Table 1
Research Questions, Hypotheses, and Samples.
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Research Question

Hypotheses/Comparisons

Samples

RQ1: How do seafarers rate Human-Machine
Interaction, Human-Machine Cooperation, and Need
Satisfaction when using route planning tools for EERP?

Hb: DSS with suggestion adaptation leads to

Ha: DSS leads to higher ratings than map
charting.

Simulator; Online

higher ratings than standard DSS.

RQ2: How do seafarers describe autonomy with a DSS
featuring suggestion adaptation in terms of
competence, breathing space, mastery, and
co-evolution?

Descriptive; no hypothesis.

Simulator only

RQ3: How do seafarers rate automation preferences in
route planning, and does preference for decision
selection correlate with low autonomy need
satisfaction?

Hc: Preference for decision selection correlates
negatively with autonomy need satisfaction.

Simulator; Online

with third-party commercial software such as BonVoyage or Octopus
(Simulator: M = 2.8, SD = (2.9); Online: M = 5.5, SD = (3.6)), and
somewhat less familiar with websites such as OpenSeaMaps (Simulator:
M = 1.6, SD = 1.6; Online: M = 4.0, SD = 3.0). Therefore, participants
were neither unfamiliar nor overly familiar with systems used or similar
to those used in this study.

2.2. Procedure

In both studies, participants were tasked with planning three routes
with the least fuel consumption possible between two positions in either
the Alaskan, Mediterranean or Andaman Sea, with a duration between
2 and 5 day. The routes were created together with subject-matter
experts to ensure practical relevance and realism. In a within-subject
design, participants used one of each route-planning tool once: (1)
OpenSeaMaps (OSM; a digital charting tool), (2) an energy efficiency
DSS (see Section 2.3) without an adaption feature, and (3) the DSS
with an adaption feature. Order of tool and geographical location were
counter-balanced across participants.

In the simulator, participants conducted planning in a professional
ship bridge simulator (Wartsila, 2023). They received comprehensive
route planning information (e.g. vessel specifications, oceanographic
and meteorological data). Participants performed watch duties during
planning, including monitoring surroundings and avoiding collisions.
After each planning session of max. 20 min (Mg, = 696.6, SD =
671.8), they completed questionnaires in LimeSurvey v3.28 (Limesur-
vey GmbH, 2015). Online, participants only conducted route-planning
with the web-based route-planning tools on their computers. They
received comprehensive route planning information via text in the
survey tool and each session lasted for max. 20 min (M., = 413.8, SD =
334.9). Since the online study did not include a watch task, which could
influence ratings of task-relevant metrics, we analyzed each sample
separately for RQ1. For RQ3, which examined setting-independent
constructs, we combined the samples.

2.3. Decision support system

The DSS utilized in this study was developed through a user-
centered design process as described in Schwarz et al. (2023). The
interface (Fig. 1) was presented on a tablet (simulator) or a responsive
web interface (online). The DSS included a nautical chart with optional
overlays for e.g. atmospheric pressure isobars, current direction arrows,
wind vanes, and significant wave height heat maps (A). The ship’s
current position, past track, and suggested routes were also visualized
(B). A timeline control simulated virtual ships’ progress along different
routes while considering forecasted weather conditions (C). A fly-out
module provided comparisons of routing options based on key perfor-
mance indicators (KPIs) such as fuel-oil consumption, travel duration,
ETA, and weather warnings (D). In the “DSS with added adaption
feature” condition, participants could access a dedicated screen for

editing route suggestions (E). This screen displayed pre-defined way-
points, which could be moved via drag-and-drop, or points between
waypoints, allowing the addition of new waypoints. Participants could
undo/redo changes. Saving the route updated the KPIs to reflect these
changes, showing, for example, increases in time or reductions in fuel
consumption.

2.4. Measures

A range of validated scales was used to assess Human-Machine In-
teraction, Human-Machine Cooperation, and Basic Psychological Need
Satisfaction. Interaction measures included usability and user experi-
ence assessments, while cooperation measures focused on trust and
perceived cooperativity. Psychological need satisfaction was evaluated
in both technology use and workplace contexts, with subscales for
autonomy, competence, and relatedness. Table 2 provides an overview
of all measures, including their constructs, scale ranges, and citations.

Furthermore, we included the Preference for Automation Types
scale (PATS; see Table A.1 in Appendix A), which assesses users’
preferences for either human or automated control of different levels of
functions based on Parasuraman et al. (2000)’s framework. The scale
includes four dimensions: information acquisition (e.g., “Gather data
from multiple sources or sensors”), information analysis (e.g., “Perform
calculations with current data”), decision selection (e.g., “Make a deci-
sion on which action(s) to carry out based on current data”), and action
implementation (e.g., “Put a decision into action”). The development
and validation of the scale is described in Zoubir et al. (2024b).

2.5. Statistical analysis

Power analyses with G*Power (Faul et al., 2007) assumed a medium
effect size (d = 0.5 or r = 0.3), « = .05 and § = .8. The minimum sample
size for Ha and Hb (one-sided, dependent t-Tests) was 27. Therefore,
the simulator sample (n = 18) lacked sufficient power to detect medium
or small effects, so non-significant results may reflect false negatives.
The online sample (N = 48) was sufficiently powered. The minimum
sample size for Hc (one-sided, Pearson’s product-moment correlation)
was 64, which was achieved by pooling both samples (N = 66). Pooling
was justified as autonomy need satisfaction at work was a construct
independent of DSS interaction and the PATS was administered before
tool use. Additionally, Walter et al. (2019) found that online panel
data has comparable psychometric properties and validity to conven-
tional data, further supporting the pooling of samples here. We utilized
parametric tests despite partially non-normal distributions to maintain
greater statistical power and sensitivity to detecting actual differences,
while outliers were included to preserve the variability present in the
sample. Effect sizes were interpreted in accordance with (Cohen, 2013).
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Fig. 1. Route-planning DSS. Displayed are weather overlays (A), route suggestions (B), dynamic timeline control (C), and route KPI comparisons (D). The route suggestion adaptation

feature is displaying in E.
2.6. Qualitative analysis

Conducted interviews followed the proposed framework of auton-
omy in human-algorithm relations by Savolainen and Ruckenstein
(2022). Following a semi-structured guideline, each of the four di-
mension was introduced and participants questioned about to what
extent they felt the system fulfilled or did not fulfill that facet, and
which system features contributed to this. An R-based offline tool for
WhisperTranscribe (Radford et al., 2022; Wijffels et al., 2023) was
used to transcribe the interviews verbatim, followed by verifying the
accuracy of the transcripts. Thematic analysis was applied consistent
with Braun and Clarke (2006). MZ and MG first familiarized themselves
with the data and subsequently created initial codes. The coders then
discussed observed patterns and develop initial themes in a workshop.
Next, coders independently assigned participants’ responses to a theme.
For each dimension, individuals’ responses were classified as pertaining
to a theme or not. In this manner, we examined how many participants
addressed a theme, without counting e.g. repeated mentions of a theme
by an individual. Results of this initial coding cycle showed a strong

inter-coder reliability (x = .89). In a subsequent workshop, categoriza-
tions were discussed until coders obtained a consensus. See Appendix
B for all themes and definitions.

3. Results
3.1. RQI - Evaluation metrics

3.1.1. Ha comparison of DSS with conventional charting tool

Ha predicted that DSS usage would lead to higher ratings of Human—
Machine Interaction, Cooperation, and BPN metrics compared to con-
ventional map charting tools. One-sided dependent t-tests showed a
significant increase in all metrics except trust and autonomy need
satisfaction in both samples (Table 3). Effect sizes ranged from small
to large, with particularly strong improvements observed in Hedo-
nic Quality (d = 1.69, 0.98), Cooperativity (d = 0.77, 0.63), and
Relatedness with Technology (d = 0.82, 0.56).

The pattern of results was largely consistent across both samples,
though effect sizes were generally smaller in the online study, suggest-
ing that direct interaction with the DSS in a simulator setting may have



M. Zoubir et al.

Applied Ergonomics 128 (2025) 104518

Table 2
Summary of Measures.
Category Scale Name Construct Measured Range Citation
Interaction System Usability Scale (SUS) System effectiveness, efficiency, and satisfaction 0-100 (Brooke, 1996)
User Experience Questionnaire Short Scale -3-3 (Schrepp et al.,
(UEQ-S) 2017)
Hedonic quality Emotional response and engagement
Pragmatic quality Perceived usefulness and functionality
Cooperation Checklist for Trust between People and Perceived trust in automation (reliability, 1-7 (Jian et al.,
Automation predictability, dependability) 2000)
Perceived Cooperativity Scale Perceived cooperativity of agents in joint 1-6 (Attig et al.,
activities 2024)
Needs Basic Psychological Need in Technology Use 1-6 (Moradbakhti
(BPN-TU) et al., 2024)
Autonomy Self-regulate one’s experiences and actions
Competence Effectance and mastery
Relatedness to Others Socially connected to others through usage
Relatedness to Technology Socially connected to technology
Other Basic Psychological Need Satisfaction at Work Satisfaction of autonomy, competence, and 1-6 (Chen et al.,
Scale (BPNSWS) relatedness needs at work 2015)
Preference for Automation Types Scale (PATS) Preference for automation in information 1-6 (Parasuraman
acquisition, analysis, decision selection, and et al., 2000)
action implementation
Table 3

Ha: Comparison of Human-Machine Interaction, Human-Machine Cooperation and BPN measures between conventional digital charting and Decision Support Systems.

Simulator (n = 18)

Online (N = 48)

Measure Chart DSS t (p) d Chart DSS t (p) d
M(SD) M(SD) M(SD) M(SD)
Usability 41.7 59.8 2.91 0.69 44.4 55.1 3.62 0.52
(20.4) (16.0) (.005)** (15.5) (13.8) (<.001)%**=
Hedonic -1.1 (1.1) 1.1 (1.1) 7.15 1.69 -0.5 (1.5) 1.0 (0.9) 6.79 0.98
Quality (<.001)*** (<.001)***
Pragmatic -0.4 (1.7) 1.3 (1.2) 3.27 .0.77 0.0 1.4 1.2 (1.0) 5.62 0.81
Quality (.002)** (<.001)***
Trust 39 (1.4 4.0 (0.6) 0.29 (.387) 0.07 3.9 (1.0) 4.1 (0.6) 1.09 (.141) -0.16
Cooperativity 2.8 (0.7) 3.7 (0.9) 3.27 0.77 3.0 (0.9) 3.8 (0.7) 4.37 0.63
(.002)** (<.001)***
Autonomy 3.5 (1.5) 4.1 (1.2) 1.20 (.124) 0.28 4.2 (1.2) 4.0 (1.1) —-0.69 -0.10
(.753)
Competence 3.1 (1.2) 4.0 (1.1) 2.07 0.49 3.5 (1.1) 4.0 (1.1) 2.36 0.34
(.027)* (.011)*
Relatedness 2.4 (0.9) 3.3 (1.2) 2.69 0.63 2.8 (1.2) 3.4 (1.2) -2.98 —-0.43
(Others) (.008)** (.002)**
Relatedness 2.3 (1.1 3.6 (1.3) 3.47 0.82 2.7 (1.4) 3.6 (1.3) 3.91 0.56
(Tech) (<.001)*** (<.001)***

amplified the perceived benefits. Notably, trust and autonomy need
satisfaction showed no significant differences in either sample. This
suggests that while the DSS improved perceived usability, cooperation,
and competence, it may not have sufficiently addressed factors influ-
encing trust or autonomy perception, such as system transparency or
user control.

Thus, Ha was only partially supported: Interaction metrics consis-
tently improved with large effect sizes, but trust and autonomy showed
no significant differences.

3.1.2. Hb: Comparison of DSS with and without adaption feature

Hb: Comparison of DSS with and without Adaptation Feature

Hb predicted that DSS usage with a suggestion adaptation feature
would lead to higher ratings of Human-Machine Interaction, Cooper-
ation, and BPN metrics compared to a DSS without this feature. One-
sided dependent t-tests showed a significant increase in trust, autonomy
need satisfaction, usability, and hedonic quality in the online sample,
with small effect sizes (Table 4). No significant improvements were
found for cooperativity, competence, or relatedness with technology.

Effect sizes for trust (d = 0.42), autonomy (d = 0.41), usability
(d = 0.29), and hedonic quality (d = 0.42) were small, suggesting

that while the adaptation feature improved user experience, its impact
on overall perception remained modest. The simulator sample showed
similar trends but with slightly stronger effects for usability (d = 0.52)
and especially trust (d = 0.95). However, cooperativity and competence
did not significantly improve in either sample, indicating that while
the adaptation feature enhanced usability, trust and a feeling of being
autonomous, it may not have strengthened perceptions of collaboration
or user skill.

Thus, Hb was only partially supported: The adaptation feature
improved ratings on selected scales, particularly trust, usability, and
autonomy satisfaction, but did not lead to broader improvements across
all measured metrics.

3.2. RQ2: Qualitative analysis of dimensions of autonomy

Interviews explored the four dimensions of human-algorithm inter-
action postulated by Savolainen and Ruckenstein (2022), and extracted
factors supporting perceived autonomy during DSS usage. The results
of the thematic analysis of seafarer interviews were summarized in an
Ishikawa fishbone diagram (Ishikawa and Loftus, 1990, ; Fig. 2). Due
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Hb: Comparison of Human-Machine Interaction, Human-Machine Cooperation, and BPN measures between DSS- (without adaption feature) and DSS+ (with adaption feature).

Simulator (n = 18)

Online (N = 48)

Measure DSS- DSS+ t (p) d DSS- DSS+ t (p) d
M(SD) M(SD) M(SD) M(SD)

Usability 59.8 64.2 2.20 0.52 55.1 57.4 1.99 0.29
(15.97) (15.84) (.021)* (13.78) (12.50) (.026)*

Hedonic 1.1 (1.11) 1.2 (1.22) 0.53 (.303) 0.12 1.0 (0.94) 1.3 (1.00) 2.90 0.42

Quality (.003)**

Pragmatic 1.3 (1.17) 1.5 (1.19) 1.22 (.121) 0.29 1.2 (0.97) 1.1 (1.15) -0.72 —0.11

Quality (.764)

Trust 3.97 5.00 4.01 0.95 4.05 4.40 291 0.42
(0.61) (1.25) (<.001)*** (0.65) (1.14) (.003)**

Cooperativity 3.69 3.87 1.29 (.108) 0.30 3.75 3.84 1.07 (.146) 0.15
(0.87) (0.88) (0.69) (0.84)

Autonomy 4.13 4.68 2.35 0.55 4.03 4.35 2.86 0.41
(1.23) (1.13) (.016)* (1.09) (0.88) (.003)**

Competence 3.98 4.13 0.54 (.299) 0.13 4.01 4.14 1.18 (.122) 0.17
(1.19 (1.32) (1.08) (1.00)

Relatedness 3.28 3.61 2.92 0.69 3.38 3.51 1.13 (.132) 0.16

(Others) (1.25) (1.37) (.005)** (1.16) (1.15)

Relatedness 3.65 4.06 1.59 (.065) 0.37 3.56 3.76 1.50 (.070) 0.22

(Tech) (1.28) (1.15) (1.26) (1.30)

to space constraints, the following section summarizes only the major
results and examples; please refer to Appendix B for full definitions,
quotations and theme distribution across participants.

Algorithmic competence. Regarding factors increasing their ability to
interact with the algorithm, seafarers frequently mentioned features
supporting Algorithm Comprehensiveness (n = 17), including explicit ex-
planations of the DSS or implicit assumptions by users. The latter often
involved Data Transparency (n = 16), such as correlating unabridged
wave height data with DSS route suggestions to reconstruct the tools’
planning process. Affordances supported Algorithm Recognition (n = 17),
often regarding assumptions about how input data (e.g., Requested
Time of Arrival) influenced outputs (e.g., Estimated Time of Arrival).
Perceived Limitations (n = 10) included scepticism about the certainty
of suggestions, with seafarers suggesting e.g., traffic light systems to
indicate system confidence in a result.

Situational mastery. To overcome challenges and make the most of
opportunities, seafarers most often specified support via System Us-
ability (n = 14), particularly ease of use, which increased task speed,
e.g. compared to traditional, manual route planning. Furthermore,
seafarers pointed out support through Data Integration (n = 11), such
as combining weather data typically displayed on different systems
on the bridge onto one screen, and Data Visualization (n = 7) of
information usually not displayed spatially or digitally (e.g. tide tables).
Furthermore, seafarers mentioned Increased Decision Accuracy (n = 11)
and Increased Confidence (n = 8), e.g., through features comparing
route KPIs, or simply confirming that a human-created route would
also be suggested by the DSS. A key Perceived limitation (n = 11) was
insufficient data transparency (e.g. unclear how recent weather data
was), which itself hindered seafarers’ need for safety.

Breathing space. Supporting the feeling of freedom to make
autonomous decisions, seafarers responses were coded for User Em-
powerment (n = 18), e.g. system considering additional calculations
for which users do not have the capacity to consider, and Decision
Flexibility (n = 18), the availability of an adaption feature. Furthermore,
Increased Work Efficiency (n = 13) would reportedly give seafarers the
capacity to multitask other duties on the bridge. Additionally, seafarers
mentioned the Moderating Effect of Work Experience (n = 11), suggesting
that seafaring experience (e.g. familiarity with a geographical region)
increases task efficiency more strongly than less experience. Regarding
negative effects on breathing space, some seafarers warned of System
Intrusiveness (n = 12), i.e. suggestions of routes seafarers would not

travel; potentially dangerous with less experienced seafarers. At the
same time, the User Retains Responsibility (n = 12) for EERP and safety,
and seafarers often mentioned that they could simply ignore the DSS if
they disagreed with recommendations.

Co-evolution. Mutual growth of user and system was influenced by the
possibility of Collaborative Workflows (n = 16), with seafarers often
referring to DSS suggestions as “brainstorming” new routes. Similarly,
Co-Learning (n = 15) was experienced by seafarers receiving route
suggestions they had never considered, and suggested the DSS incor-
porate historical routing data to adapt to personal preferences. Work
experience was again relevant, with seafarers highlighting the need to
Balance System & Human Knowledge (n = 10). For example, one route
suggestion through the Strait of Messina did not consider that this route
requires taking on a pilot, which is non-digitalized experience knowl-
edge. A Perceived Limitation (n = 11) was a lack of trust, with some
seafarers declaring necessary double-checking of DSS suggestions an
impediment and suggesting that manual edits to routes be remembered
and incorporated into future route suggestions.

General feedback. After discussing autonomy-related aspects, partici-
pants provided general feedback on their DSS experience, highlighting
additional needs. Weather-related features were the most frequently
mentioned (n = 7), followed by data representation and system trans-
parency concerns, including raw data access, quality indicators, and
symbol clarity (n = 4). Requests for more route proposals (n = 3),
trust-related concerns citing uncertainty or mistrust (» = 3), and map
features such as legends, overlays, and scaling (n = 3) were also noted.
Other aspects mentioned once included position tracking, ship data,
waypoints, safety corridor displays, increased intuitiveness, system on-
boarding, pilot requirement indicators at ports, and fishery data. Some
feedback was in response to issues raised while exploring autonomy
facets, such as raw data access (Algorithmic Competence), weather
integration (Situational Mastery), and intuitiveness (Breathing Space).
However, aspects like safety corridor displays, pilot requirement indica-
tors, and fishery data point to broader usability and information needs
beyond the autonomy framework, while participants issues regarding
trust point to aspects more strongly associated with system trust.

3.3. RQ3: Correlation of autonomy need satisfaction at work and prefer-
ences for decision selection

After pooling samples from both studies (N = 66), preliminary
explorations compared the subscales of the PATS to a neutral scale
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Fig. 2. Fishbone diagram showing themes for Dimension of Autonomy in Human-Algorithm Interaction, with the number of participants coded as addressing each theme in

parentheses.

mean of 3.5 via one-sample t-Tests. For Information Acquisition (M
=3.9, SD = 0.9, #(65) = 4.07, p < .001, d = 0.50, moderate effect) and
Information Analysis (M = 4.0, SD = 0.9, #(65) = 4.17, p < .001, d =
0.51, moderate effect), results deviated significantly from the neutral
mean, suggesting seafarers prefer these functions be carried out by
automated systems. For Decision Selection (M = 2.8, SD = 0.8, #(65)
= —7.04, p < .001, d = —0.87, large effect) and Action Selection (M =
3.0, SD = 1.0, #(65) = —4.43, p < .001, d = —0.55, moderate effect),
there was a significant difference in the opposite direction, indicating
a preference for human control.

Previous research (Zoubir et al., 2025a) reported a negative corre-
lation between autonomy need satisfaction and preference for decision
selection, suggesting that seafarers who experienced greater frustration
with autonomy tended to report a greater preference for automated
decision-making. This finding appeared counterintuitive, as one might
expect lower autonomy satisfaction to correspond with a stronger
preference for retaining decision control.

To replicate this, Hc predicted a negative correlation between au-
tonomy need satisfaction at work (BPNSWS, M = 3.5, SD = 0.8)
and the Decision Selection subscale of the PATS. However, Pearson’s
product-moment correlation (+(63) = —0.078, p = .269) indicated only
a weak negative relationship that was not statistically significant. Thus,
Hc was not supported.

While the direction of the correlation aligned with previous find-
ings, the lack of statistical significance suggests that autonomy need
satisfaction may not be a strong predictor of decision selection prefer-
ences in this sample, that additional factors influence this relationship,
or that the sample size had limited statistical power to detect a small
effect, if one existed.

4. Discussion
4.1. Summary

The objective of the current study was twofold: with experienced
seafarers (1) examine the effect of a DSS suggestion adaption feature on
Human-Machine-Interaction, Human-Machine-Cooperation, and Basic
Psychological Need Satisfaction metrics with AB-testing, and (2) ex-
plore facets of autonomy in DSS usage with qualitative data analysis.
For the first, results showed significant improvements in most metrics
except trust and autonomy need satisfaction when comparing the DSS

to a digital charting tool. Comparing DSS versions, an adaption feature
showed significant increases in autonomy satisfaction, trust, usabil-
ity, and hedonic quality. Thus, Ha and Hb were partially supported,
showing improvements in selected Human-Machine Interaction, Coop-
eration, and BPN metrics. For the second objective, qualitative analyses
underlined the role of Algorithm Comprehensiveness, System Usability,
User Empowerment, and Collaborative Workflows in supporting the
experience of autonomy. In further analyses exploring preferences for
automation types, seafarers indicated preferring automated Information
Acquisition and Information Analysis for EERP but preferred human
Decision Selection and Action Implementation. Finally, a correlation
analysis could not replicate a significant relationship between auton-
omy satisfaction at work and automated decision selection, meaning
Hc was not supported.

4.2. Theoretical and methodological implications

Diversity of evaluation metrics. Some user experience research has mod-
eled BPN fulfillment using ratings of positive affect and hedonic quality
(Hassenzahl et al., 2015, 2010), or with acceptance, intention to use,
and hedonic quality (Stiegemeier et al., 2024). However, the present re-
search demonstrated two findings: (1) Ha showed that hedonic quality
increased in parallel with competency and relatedness, but not auton-
omy, need fulfillment, and (2) Hb showed that increases in autonomy
need fulfillment coincided with increases in hedonic quality, while
competency and relatedness did not change significantly. This supports
the conclusion of Stiegemeier et al. (2024) that generally fulfilling
needs enhances enjoyment of tool usage. However, it also underlines
the necessity of using a comprehensive set of evaluation metrics during
system development. Focusing only on hedonic quality in comparisons
between the DSS and the control condition would have overlooked the
lack of features supporting trust and autonomy needs. This emphasizes
the need for metrics tailored to the usage context. For example, the
collaborative nature of EERP and challenges to experienced autonomy
onboard indicated a need for Human-Machine Cooperation and BPN
metrics.

Deeper understanding of seafarers. Our results indicate differences be-
tween seafarers and other user groups. Seafarers frequently requested
access to large amounts of raw data to verify system reliability, em-
phasizing data transparency. Typically, trust research (cf. Hoff and
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Bashir, 2015, for a key review) recommends automation transparency,
including explicit system reliability information, but seafarers preferred
manual checks, which increases friction (i.e., making a task more diffi-
cult to complete). This contrasts with “ease of use” design guidelines,
where usability can lead to higher trust and performance (Brauner
et al,, 2019, e.g.,). Qualitative responses indicate that seafarers’ trust in
DSS was contingent on their ability to cross-check system outputs rather
than relying on system-provided reliability scores. Given their high
safety requirements and experience in processing meteorological and
oceanographic data, manual verification may serve as a trust-enhancing
mechanism rather than a usability barrier, as seafarers see this as part of
their professional role (Danielsen et al., 2021). In other words, seafarers
preferred friction, which has been shown to be an effective nudge to
calibrate trust in automated systems (Naiseh et al., 2021).

However, when seafarers rated preferences for automation types,
they indicated a preference for automated information acquisition and
analysis. This suggests that while manual reliability checks should re-
main possible, automated route calculation — especially the processing
of aforementioned extensive meteorological and oceanographic data —
is preferred. Given their rigorous training (International Maritime Or-
ganization, 2018), technical systems should support existing workflows
(e.g., route safety checks) and complement areas where this training
may be lacking, such as energy efficiency (Dewan and Godina, 2024).
Furthermore, seafarers’ PATS ratings here highlight the need for sys-
tems to focus on human decision selection and action implementation.
This can be achieved through the generation of new routing ideas or
rationales for energy-efficient routing, respecting seafarers’ expertise
and preference for control over decision making and execution.

4.3. Practical implications

4.3.1. Designing for autonomy

Fulfilling basic psychological needs at work is essential for fostering
greater intrinsic motivation and well-being among employees (Deci
and Ryan, 2008). Our qualitative analysis suggests concrete design
guidelines to enhance the fulfillment of a key need that is particularly
constrained on board: autonomy.

Regarding algorithm competence, explainable Al (XAI) can support
users’ algorithm comprehension and recognition, e.g. by highlighting
raw spatial data and captioning the influence on a suggestion (cf.,
e.g. Mohamed et al., 2022; Schrills and Franke, 2020). However, a
systematic review of XAI research has underlined that explanations
are often data-driven and not goal-driven, i.e. they do not explain the
agency available to artificial and human agents (Anjomshoae et al.,
2019). To support XAl and autonomy needs, a DSS should therefore also
visualize the proportion of systems’ processing to users’ input (e.g. data,
conditions, or customization) on a suggestion.

Another key finding was how the integration and visualization of
multiple data sources improved situation mastery through increased task
efficiency, a principal advantage of Industry 4.0 applications (Zhang
et al., 2021). To further enhance decision accuracy, spatial mapping
should incorporate meta-information (e.g., data source and recency),
which can positively impact confidence without reducing performance
(Riveiro et al., 2014). Additionally, incorporating spatial-temporal vi-
sualizations (i.e., time as a fourth dimension) enhances the comprehen-
sibility of DSS suggestions and empowers users to generate situational
explanations (Ltifi et al., 2016). However, reviews of DSS in clinical set-
tings have identified increased visualization complexity as a significant
challenge (Wang et al., 2021), highlighting the necessity of human-
centered design, including performance testing, to ensure users are not
overwhelmed.

Other reported advantages of increased efficiency were seafarers’
ability to multitask bridge duties (facilitated by the DSS being on a
tablet), contributing to Breathing space. At the same time, seafarers per-
ceived a possible intrusiveness of suggestions and a moderating effect of
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work experience on performance. Adaptable automation, where task al-
location is decided by the operator (Parasuraman and Wickens, 2008),
could allow seafarers to customize the DSS level of automation to their
preferences (e.g., suggest entire routes vs. suggest only improvements
to manual routes), to find a balance between efficiency and system
influence. While this could encourage seafarers to set automation to
their level of experience, previous research with adaptable automation
has shown that users often select constant high levels of automation,
even under low system reliability (e.g. Sauer et al., 2011; Chavaillaz
et al.,, 2016). However, BPN could be used to motivate the selection
of lower levels of automation by appealing to seafarers’ increased
autonomy and competence.

Feelings of growth in the sense of Co-Evolution were often linked
with inspiration for routing alternatives, possibly indicating that some
seafarers had a usual or prototypical route in mind before route sug-
gestions were created. DSS could increase learning effects by high-
lighting path similarities and differences between a prototypical route
(e.g. based off historical data) and energy-efficient alternatives, and
quantify KPI changes. Additionally, the maritime industry often in-
volves collaborative work between different officers on board and
between onboard and offshore personnel (Zoubir et al., 2023, 2025a).
DSS systems should include features that support workflows with third
users, such as reporting rationales (e.g., projected trade-offs between
time and consumption) for routing decisions, possibly in the form of
data visualizations like Pareto curves (Garcia-Gonzalo et al., 2013), to
empower users’ decision-making in multi-stakeholder teams.

4.3.2. Integrating motivation

The present research contributes to the growing body of motiva-
tion research in human factors, which has traditionally emphasized
cognition (Szalma, 2014). By demonstrating how specific DSS fea-
tures can enhance autonomy — a key driver of intrinsic motivation —
this study offers a structured approach to integrating motivation into
human-centered design. Motivation is not only essential for technology
adoption (Peters et al., 2018) but also helps mitigate mental fatigue
(Herlambang et al., 2019), a known challenge in maritime operations.
Moreover, it plays a crucial role in fostering long-term sustainability
cultures (Hanson, 2013).

Prior research has shown that onboard fuel consumption trackers
can reduce fuel use by up to 10%, particularly when combined with col-
laborative workshops that enhance knowledge and awareness (Jensen
et al., 2018). However, such improvements depend on users’ willing-
ness to engage with new systems and processes, which is shaped by
intrinsic motivation. The satisfaction of BPN has been found to strongly
predict individuals’ preference for learning new things (Rowicka and
Postek, 2023), aligning with broader behavioral change models in
energy efficiency that emphasize intrinsic motivation as a key factor
(e.g., Barr and Gilg, 2007).

By identifying design elements that enhance autonomy, this re-
search underscores the role of motivation in effective DSS implemen-
tation. Ensuring that systems align with users’ psychological needs
can drive long-term engagement and facilitate sustainable behavioral
change, reinforcing the key role of human factors in technological
solutions for energy efficiency.

4.4. Limitations and future research

One of the primary limitations of this study is the diversity of the
study sample. The population for the simulator study mainly consisted
of seafarers operating in northern European waters. Although the sam-
ple for the online study was recruited internationally, we did not collect
data on seafarers’ place of training or their shipping company. Con-
sequently, our results cannot account for influences by shipping type
(e.g., tramp or line shipping) or company culture (cf. Hammander et al.,
2015). While the Standards of Training, Certification, and Watchkeep-
ing for Seafarers (International Maritime Organization, 2018) ensure
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similar training content internationally, it is unclear to what extent
other aspects of education (e.g., available time for simulator training)
may influence seafarers’ personal requirements for a DSS or EERP,
or even differences in BPN experience. These differences should be
evaluated in future studies.

Furthermore, the PATS described a system with a static level of
automation, where functions were either entirely human-operated or
fully automated. This limits our understanding of how preferences
might shift under dynamic automation conditions, an approach which
could positively impact autonomy satisfaction (see Section 4.3). Future
research should therefore examine preferences for adaptable or adap-
tive automation types, i.e., where task allocation is adjusted by the
operator or the system (Parasuraman and Wickens, 2008), and evolve
the PATS to better quantify dynamic conditions.

This study examined subjective assessments in DSS usage, providing
insights into user interactions but not capturing performance outcomes
like fuel efficiency. Subjective perceptions shape technology adoption
(cf. Grani¢, 2024, for an overview of models), trust (Hoff and Bashir,
2015), and decision-making (Bader and Kaiser, 2019). However, the ab-
sence of objective metrics limits direct evaluation of how DSS features
impact operational efficiency, decision accuracy, or task effectiveness
in real-world settings. Without performance-based data, it remains un-
clear to what extent increased motivation and perceived improvements
translate into tangible benefits, such as reduced fuel consumption or
faster response times. Future research should incorporate measures like
fuel efficiency and task completion times to complement subjective
evaluations and provide a more comprehensive assessment of DSS
effectiveness.

5. Conclusion

Our findings emphasize the critical role of Human-Centered Design
in developing sustainability applications for the maritime industry,
particularly to support workers’ needs during energy-efficient oper-
ations. We demonstrated that classical Human-Machine Interaction
metrics were insufficient to identify requirements for trust or autonomy
needs. Additionally, we showed that suggestion adaptation features
significantly enhanced autonomy fulfillment. Furthermore, by probing
experienced seafarers, we provided design guidelines to support au-
tonomy in complex working environments like maritime navigation,
including the integration and visualization of (meta-)data to support
XAI and collaborative workflows onboard and onshore. Finally, our
study offers insights into seafarers as a unique user group who preferred
manual checks over automation transparency, which increases task
friction but enhances trust. We highlighted avenues for future research,
which should explore diverse shipping cultures and evaluations of
adaptable automation. By focusing on human-centered, adaptable DSS,
we can significantly improve operational efficiency and sustainabil-
ity while enhancing employee well-being and intrinsic motivation.
Seafarers could thus better manage energy-efficient workflows while
feeling more autonomous and supported, instead of being caught up in
conflicting goals. This approach fulfills current industry needs, whilst
establishing a solid foundation for the collaborative and innovative
advancements envisioned in Industry 5.0, ultimately fostering a more
sustainable and efficient maritime industry.

6. Key points

Basic psychological need metrics can enhance human-centered
DSS for industry 5.0

Seafarers’ autonomy satisfaction may motivate energy-efficient
route-planing

Thematic analysis of seafarers’ autonomy experiences suggested
key design guidelines

Route adaptation features enhance autonomy and trust

HCI metrics alone are insufficient for DSS evaluation
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Appendix A. Preference for automation types scale

Imagine that an automated system could support the task of plan-
ning energy-efficient routes. This task includes steps such as gathering
data on the ship and environment, calculating metrics such as fuel
consumption, selecting an optimal route, and creating a voyage plan
based on this route.

This automated system would work to complete steps that could
have been (either partially or completely) performed by humans.

Please indicate the degree to which you would prefer the following
steps to be carried out either solely by a human or solely by an
automated system

Appendix B. Thematic analysis - Theme definitions and codings

See Table B.1 and Fig. B.1.
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Table A.1
Preferences for Automation Types Scale.
Task Preference
Completely Mostly Somewhat Somewhat Mostly Completely
Prefer Prefer Prefer Prefer Prefer Prefer
Human Human Human Automated Automated Automated

Obtain data from relevant sources

Organize data based on criteria

Highlight which data might be important
Filter out irrelevant data

Predict task progression using current info
Process data to get new information

Fill gaps in the data using available info
Combine data from different sources to make deductions
Present options based on available information
Make a decision weighing costs and benefits
Use reasoning to make a decision

Make a decision based on conditions

Do the decided upon actions

Use tools or hardware to complete actions
Combine different actions to perform tasks
Ensure the chosen task gets done
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Fig. B.1. Codings. Note: Due to time constraints, participants 203 and 212 did not answer interview questions regarding Co-Evolution.
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Table B.1
Algorithm Interaction Overview.
Topic Code Definition Example Quote D
Algorithm Statements reflecting users’ grasp of how the “[...] the algorithm knows that if the weather is 201
Comprehensiveness algorithm processes data or make decisions, and not so nice, then maybe we had better not go that
Algorithmic what features support this. way.”
Competence Algorithm Statements identifying and acknowledging the “It then loaded various parameters, processed 208
Recognition presence of algorithms in the system, and the them and issued route suggestions.”
context used to identify them.
Result Evaluation Statements reflecting users’ ability to critically “[...] then I take the route suggestions and 211
evaluate the decisions made by algorithms, their compare it with my own ideas.[...]”
outcomes and what features support this.
Transparency & Trust Statements reflecting the extent to which users can “So it was just no longer clear to me why this 215
see the data and operations used by algorithms, program displayed this exactly.”
their perceived reliability and what features
support this.
Practical Implications Statements reflecting the impact of algorithms on “[...]if you had to calculate it manually, it would 209
users’ decision-making processes and their practical really take longer. [...]”
applications
Perceived Limitations Statements identifying limitations of the system “Sometimes it just showed me information and I 219
and suggestions for improvement. did not know where it came from.”
Increased Statements that emphasize the increased “[...1it took a second to load all the weather 218
Comprehension understanding of a situation or decision through conditions for the simulation. But once they were
system interaction. loaded, it was very practical for me to compare.”
Situational Decision Accuracy Statements that highlight the system’s role in “[...]it supports comparing fuel consumption and 204
Mastery supporting the accuracy of decisions. travel duration, which are crucial in shipping.
Time is money, and so is fuel consumption.
Ultimately, one must prioritize which factor takes
precedence.”
Usability Statements that discuss the system’s support in the “[...]makes it easier, clearer and faster” 202
effectiveness, efficiency, and satisfaction of
decision-making in general, or specific features.
Visualization Statements related to the visual representation of “[...]T could already see which factors were 201
data. influencing it.”
Data Integration Statements that highlight the integration and “And in terms of energy efficiency, it is of course 211
combination of different data types. much easier because everything flows together.”
Adaption Statements focusing on users adapting their “[...]there were suggestions that I might not have 212
decision-making based on system feedback. considered, resulting in an ’aha’ moment, realizing
that we can do it that way too.”
Confidence Statements that reflect the users’ feeling of control “And that is a great thing if you can avoid 218
and confidence in their decisions facilitated by the collisions and solve a second task at the same
system. time.”
Perceived Limitations Statements identifying limitations of the system “[...]Jin the end the decision is of course always 220
and suggestions for improvement. dependent on the quality of the data that is
utilized, but also on what the navigator or the
decision-maker ultimately trusts in himself, the
crew and the ship.”
Decision Flexibility Statements emphasizing the freedom to choose or “[...]T had a complete choice between the 201
modify routes. suggested routes, I could just as easily edit each
. individual route.”
Breathing
Space Work Efficiency Statements discussing how the system affects work “So the system creates a space for me in which I 204
efficiency and time management. gain time.”
Users’” Empowerment Statements emphasizing how the system empowers “Travelling [...]Jnear Corsica, I would not have 205
users or respects their autonomy. realized that you travel through there quickly and
all that. It is easier, of course.”
Users’ Retain Statements focusing on who makes the final “This means that the system does not interfere 208
Responsibility decisions and the responsibility associated with with my decision-making process or my intention
them. to decide as I see fit.”
System Intrusiveness Statements expressing negative feelings about the “[...] is also a danger, to offer simple solutions.” 214
system’s intrusiveness or perceived control.
Work Experience Statements reflecting how experience and skill “[...]the more experienced the navigators are, the 214
level affect the use of the system. more cautious or situationally aware they are in
choosing their data and making decisions based on
it.
Perceived Limitations Statements identifying limitations of the system “[route editing] was a bit time-consuming.” 206

and suggestions for improvement.
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Table B.1 (continued).
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Topic Code Definition Example Quote D
Collaborative Statements highlighting the collaborative aspect of “It provided me with a basic route, giving me the 209
Workflow working with the algorithm to achieve a common opportunity to work on making improvements.”

goal.

Co-Evolution Increased Task Statements referencing the efficiency and precision “[...] the system is just better suited to 202
Efficiency of decision-making when working with the system. implementing this than you could do manually.”
Personalization Statements mentioning how the system offers “[...] but the system is currently limited and 207

customization based on user input. cannot, for example, account for distances to
obstacles that are personally important to me.”
Co-learning Statements discussing the learning process between “To validate its decision, I really considered all the 214
the user and the system. possibilities. Just as a final check, brainstorming or
just to confirm it myself.”
Trust Statements expressing trust in the algorithm’s “[...] T trust that the person who programmed this 206
recommendations and its reliability in various knew what they were doing.”
conditions.
Balancing Statements referencing the need for a trade-off “[...]allows the watch officer to incorporate their 220
System/Human between algorithmic suggestions and human experience into the simulation. If I know there is a
Knowledge experience/knowledge. low-pressure area somewhere, I can roughly
estimate how the wind and waves will come
from.”
Perceived Limitations Statements identifying limitations of the system “But the system is already so limited that it 207

and suggestions for improvement.

cannot yet, for example, suggest distances to
obstacles that are important to me individually, it
will always suggest the same thing.”
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